Um algoritmo de nuvem de partículas para combinação de classificadores em aprendizado multi-visão

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Zilton Jose Maciel Cordeiro Junior
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/SLSS-8GQMAX
Resumo: The multi-view or multi-modality learning approach is becoming popular for providing different representations of a problem from which classifiers can learn from. Given the task of video classification, for example, the sound, the image and the subtitles may be considered views.The main idea behind multi-view learning is that learning from these representations separately can lead to better gains than merging them into a single dataset. Hence, a classification model is created for each view, and outputs provided by each of them must be combined to provide a final class for each example.This dissertation proposes a Particle Swarm Optimization (PSO) algorithm to combine the outputs coming from different views. The PSO works in two contexts: the first takes into account only the class/confidence assigned by a classifier in the categorization of an instance, applying weights to each view. The second, besides assigning weights to views, also assigns weights to each class.Experiments were performed in two datasets, each one with three views, and compared with three different methods from the literature: the majority vote, the Borda Count algorithm and the Dempster-Shafer theory. Then, a comparison was made with the approach that uses all views together into a single dataset. The PSO obtained statistically better results than the other approaches evaluated in the majority of the experiments.
id UFMG_cd7f9eb5aee5cbaf57c6be69de1d61f6
oai_identifier_str oai:repositorio.ufmg.br:1843/SLSS-8GQMAX
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Um algoritmo de nuvem de partículas para combinação de classificadores em aprendizado multi-visãoComputaçãoAprendizado multi-visãoClassificaçãoOtimização por nuvem de partículasCombinação de classificadoresThe multi-view or multi-modality learning approach is becoming popular for providing different representations of a problem from which classifiers can learn from. Given the task of video classification, for example, the sound, the image and the subtitles may be considered views.The main idea behind multi-view learning is that learning from these representations separately can lead to better gains than merging them into a single dataset. Hence, a classification model is created for each view, and outputs provided by each of them must be combined to provide a final class for each example.This dissertation proposes a Particle Swarm Optimization (PSO) algorithm to combine the outputs coming from different views. The PSO works in two contexts: the first takes into account only the class/confidence assigned by a classifier in the categorization of an instance, applying weights to each view. The second, besides assigning weights to views, also assigns weights to each class.Experiments were performed in two datasets, each one with three views, and compared with three different methods from the literature: the majority vote, the Borda Count algorithm and the Dempster-Shafer theory. Then, a comparison was made with the approach that uses all views together into a single dataset. The PSO obtained statistically better results than the other approaches evaluated in the majority of the experiments.Universidade Federal de Minas Gerais2019-08-12T01:53:00Z2025-09-09T00:17:09Z2019-08-12T01:53:00Z2011-03-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/SLSS-8GQMAXZilton Jose Maciel Cordeiro Juniorinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:17:09Zoai:repositorio.ufmg.br:1843/SLSS-8GQMAXRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:17:09Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Um algoritmo de nuvem de partículas para combinação de classificadores em aprendizado multi-visão
title Um algoritmo de nuvem de partículas para combinação de classificadores em aprendizado multi-visão
spellingShingle Um algoritmo de nuvem de partículas para combinação de classificadores em aprendizado multi-visão
Zilton Jose Maciel Cordeiro Junior
Computação
Aprendizado multi-visão
Classificação
Otimização por nuvem de partículas
Combinação de classificadores
title_short Um algoritmo de nuvem de partículas para combinação de classificadores em aprendizado multi-visão
title_full Um algoritmo de nuvem de partículas para combinação de classificadores em aprendizado multi-visão
title_fullStr Um algoritmo de nuvem de partículas para combinação de classificadores em aprendizado multi-visão
title_full_unstemmed Um algoritmo de nuvem de partículas para combinação de classificadores em aprendizado multi-visão
title_sort Um algoritmo de nuvem de partículas para combinação de classificadores em aprendizado multi-visão
author Zilton Jose Maciel Cordeiro Junior
author_facet Zilton Jose Maciel Cordeiro Junior
author_role author
dc.contributor.author.fl_str_mv Zilton Jose Maciel Cordeiro Junior
dc.subject.por.fl_str_mv Computação
Aprendizado multi-visão
Classificação
Otimização por nuvem de partículas
Combinação de classificadores
topic Computação
Aprendizado multi-visão
Classificação
Otimização por nuvem de partículas
Combinação de classificadores
description The multi-view or multi-modality learning approach is becoming popular for providing different representations of a problem from which classifiers can learn from. Given the task of video classification, for example, the sound, the image and the subtitles may be considered views.The main idea behind multi-view learning is that learning from these representations separately can lead to better gains than merging them into a single dataset. Hence, a classification model is created for each view, and outputs provided by each of them must be combined to provide a final class for each example.This dissertation proposes a Particle Swarm Optimization (PSO) algorithm to combine the outputs coming from different views. The PSO works in two contexts: the first takes into account only the class/confidence assigned by a classifier in the categorization of an instance, applying weights to each view. The second, besides assigning weights to views, also assigns weights to each class.Experiments were performed in two datasets, each one with three views, and compared with three different methods from the literature: the majority vote, the Borda Count algorithm and the Dempster-Shafer theory. Then, a comparison was made with the approach that uses all views together into a single dataset. The PSO obtained statistically better results than the other approaches evaluated in the majority of the experiments.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-25
2019-08-12T01:53:00Z
2019-08-12T01:53:00Z
2025-09-09T00:17:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/SLSS-8GQMAX
url https://hdl.handle.net/1843/SLSS-8GQMAX
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414031159492608