Automatic detection of fraudulent behavior in networks using graph learning
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/41660 |
Resumo: | Redes Neurais baseadas em Grafos (GNNs) são modelos recentes criados para o aprendizado de representações de nós (e de grafos), que alcançaram resultados promissores na detecção de padrões que ocorrem em dados de larga escala que relacionam diferentes entidades. Dentre esses padrões, fraudes financeiras se destacam por sua relevância socioeconômica e por apresentarem desafios particulares, tais como o desbalanceamento extremo entre as classes positivas (fraudes) e negativas (transações legítimas), e o desvio de conceito (i.e., propriedades estatísticas dos dados mudam ao longo do tempo). Como as GNNs são baseadas em propagação de mensagem, a representação de um nó acaba sendo muito impactada pelos seus vizinhos e pelos hubs da rede, amplificando os efeitos do desbalanceamento. Pesquisas recentes tentam adaptar estratégias de subamostragem e sobreamostragem para GNNs a fim de mitigar esse efeito sem, contudo, considerar o desvio de conceito. Neste trabalho, realizamos uma série de experimentos para avaliar técnicas existentes de detecção de fraudes em rede, considerando os dois desafios anteriores. Para isso, utilizamos conjuntos de dados reais, complementados por dados sintéticos criados a partir de uma nova metodologia introduzida aqui. Também propomos um novo framework de modelo denominado GMU-GNN, que realiza a sobre-amostragem dos nós do grafo pertencentes à classe minoritária de forma a melhorar a representatividade e expressividade no espaço latente de características interpretado pelo modelo de classificação de nós. Em novos experimentos realizados com 5 datasets, o GMU-GNN obteve um desempenho superior aos demais modelos tidos atualmente como estado-da-arte sob esses mesmos contextos e propósitos do problema aqui abordado. |
| id |
UFMG_e4e1ac5df9f4b315cf22ad1d67e88c8d |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/41660 |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Automatic detection of fraudulent behavior in networks using graph learningDetecção automática de comportamentos fraudulentos em redes utilizando aprendizado em grafosComputação – TesesRedes neurais (Computação) – TesesDetecção de fraude – TesesFraud DetectionFraudulent BehaviorGraph Neural NetworksRedes Neurais baseadas em Grafos (GNNs) são modelos recentes criados para o aprendizado de representações de nós (e de grafos), que alcançaram resultados promissores na detecção de padrões que ocorrem em dados de larga escala que relacionam diferentes entidades. Dentre esses padrões, fraudes financeiras se destacam por sua relevância socioeconômica e por apresentarem desafios particulares, tais como o desbalanceamento extremo entre as classes positivas (fraudes) e negativas (transações legítimas), e o desvio de conceito (i.e., propriedades estatísticas dos dados mudam ao longo do tempo). Como as GNNs são baseadas em propagação de mensagem, a representação de um nó acaba sendo muito impactada pelos seus vizinhos e pelos hubs da rede, amplificando os efeitos do desbalanceamento. Pesquisas recentes tentam adaptar estratégias de subamostragem e sobreamostragem para GNNs a fim de mitigar esse efeito sem, contudo, considerar o desvio de conceito. Neste trabalho, realizamos uma série de experimentos para avaliar técnicas existentes de detecção de fraudes em rede, considerando os dois desafios anteriores. Para isso, utilizamos conjuntos de dados reais, complementados por dados sintéticos criados a partir de uma nova metodologia introduzida aqui. Também propomos um novo framework de modelo denominado GMU-GNN, que realiza a sobre-amostragem dos nós do grafo pertencentes à classe minoritária de forma a melhorar a representatividade e expressividade no espaço latente de características interpretado pelo modelo de classificação de nós. Em novos experimentos realizados com 5 datasets, o GMU-GNN obteve um desempenho superior aos demais modelos tidos atualmente como estado-da-arte sob esses mesmos contextos e propósitos do problema aqui abordado.Universidade Federal de Minas Gerais2022-05-13T21:07:22Z2025-09-09T00:17:21Z2022-05-13T21:07:22Z2021-10-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/41660engRonald Davi Rodrigues Pereirainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:17:21Zoai:repositorio.ufmg.br:1843/41660Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:17:21Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Automatic detection of fraudulent behavior in networks using graph learning Detecção automática de comportamentos fraudulentos em redes utilizando aprendizado em grafos |
| title |
Automatic detection of fraudulent behavior in networks using graph learning |
| spellingShingle |
Automatic detection of fraudulent behavior in networks using graph learning Ronald Davi Rodrigues Pereira Computação – Teses Redes neurais (Computação) – Teses Detecção de fraude – Teses Fraud Detection Fraudulent Behavior Graph Neural Networks |
| title_short |
Automatic detection of fraudulent behavior in networks using graph learning |
| title_full |
Automatic detection of fraudulent behavior in networks using graph learning |
| title_fullStr |
Automatic detection of fraudulent behavior in networks using graph learning |
| title_full_unstemmed |
Automatic detection of fraudulent behavior in networks using graph learning |
| title_sort |
Automatic detection of fraudulent behavior in networks using graph learning |
| author |
Ronald Davi Rodrigues Pereira |
| author_facet |
Ronald Davi Rodrigues Pereira |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Ronald Davi Rodrigues Pereira |
| dc.subject.por.fl_str_mv |
Computação – Teses Redes neurais (Computação) – Teses Detecção de fraude – Teses Fraud Detection Fraudulent Behavior Graph Neural Networks |
| topic |
Computação – Teses Redes neurais (Computação) – Teses Detecção de fraude – Teses Fraud Detection Fraudulent Behavior Graph Neural Networks |
| description |
Redes Neurais baseadas em Grafos (GNNs) são modelos recentes criados para o aprendizado de representações de nós (e de grafos), que alcançaram resultados promissores na detecção de padrões que ocorrem em dados de larga escala que relacionam diferentes entidades. Dentre esses padrões, fraudes financeiras se destacam por sua relevância socioeconômica e por apresentarem desafios particulares, tais como o desbalanceamento extremo entre as classes positivas (fraudes) e negativas (transações legítimas), e o desvio de conceito (i.e., propriedades estatísticas dos dados mudam ao longo do tempo). Como as GNNs são baseadas em propagação de mensagem, a representação de um nó acaba sendo muito impactada pelos seus vizinhos e pelos hubs da rede, amplificando os efeitos do desbalanceamento. Pesquisas recentes tentam adaptar estratégias de subamostragem e sobreamostragem para GNNs a fim de mitigar esse efeito sem, contudo, considerar o desvio de conceito. Neste trabalho, realizamos uma série de experimentos para avaliar técnicas existentes de detecção de fraudes em rede, considerando os dois desafios anteriores. Para isso, utilizamos conjuntos de dados reais, complementados por dados sintéticos criados a partir de uma nova metodologia introduzida aqui. Também propomos um novo framework de modelo denominado GMU-GNN, que realiza a sobre-amostragem dos nós do grafo pertencentes à classe minoritária de forma a melhorar a representatividade e expressividade no espaço latente de características interpretado pelo modelo de classificação de nós. Em novos experimentos realizados com 5 datasets, o GMU-GNN obteve um desempenho superior aos demais modelos tidos atualmente como estado-da-arte sob esses mesmos contextos e propósitos do problema aqui abordado. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-10-25 2022-05-13T21:07:22Z 2022-05-13T21:07:22Z 2025-09-09T00:17:21Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/41660 |
| url |
https://hdl.handle.net/1843/41660 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856414061664665600 |