Algorithms for hierarchical graph-based image segmentation

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Edward Jorge Yuri Cayllahua-Cahuina lattes
Orientador(a): Arnaldo de Albuquerque Araújo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
País: Brasil
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/58412
Resumo: Image segmentation is an open problem in computer vision that has been extensively investigated for many years. The task of segmenting an image involves dividing the pixels of an image into different pieces, where each piece represents a distinguished characteristic in the image. There are two general approaches that have been developed for image segmentation: flat-image segmentation and hierarchical image segmentation. In flat-image segmentation, the algorithm aims to capture in a single partition all the distinguishable elements in the image. The objects in an image are composed of several details; in a flat-image segmentation approach, such details and their relationships are not considered. This means there is no structure or idea of the composition of details for the objects of the image. On the other hand, hierarchical image segmentation tackles the multi-scale nature of an image and produces a hierarchical image representation. The literature about flat-image segmentation algorithms is ample and currently has a more established theoretical background than hierarchical image segmentation. From a theoretical and algorithmic perspective, there are few methods well understood in hierar- chical segmentation; consequently, there is a gap between the well-established theoretical studies made for flat segmentation compared to hierarchical segmentation, such gap gives us a great opportunity for research on the theoretical and algorithmic aspects of hierar- chical segmentation. This thesis studies the theoretical and algorithmic notions for a hierarchical image segmentation algorithm. We examine and analyze a well-established graph-based flat im- age segmentation method and we extend it to a hierarchical image segmentation approach. The main contributions of this thesis are the following:• A hierarchical graph-based image segmentation method: we propose a method that, similarly to the extension of watersheds from flat to hierarchical, one level of the resulting hierarchy corresponds to one instance of the flat graph-based segmentation problem. • A theoretical background for hierarchizing a graph-based image segmentation method: we elaborate a precise formalism to study the formal properties to hierarchize a graph-based segmentation method. As a result of this theoretical background, we are able to propose efficient and exact algorithms to compute a hierarchical image segmentation method. • A series of strategies for the identification of key hyper-parameters of the method: we study the identification of key hyper-parameters of our hierarchical graph-based method and propose new strategies to set up these hyper-parameters. • An extension of measures for the original graph-based segmentation: we propose a generalization on the notion of relevance measure originally used by the graph- based method. Thanks to our generalization, we are able to include new relevance measures in the hierarchical graph-based image segmentation method. The new relevance measures produce hierarchies that give more importance to regions that contain certain characteristics. • The demonstration of good performance in a practical evaluation: we validate and show that all of our proposals have a good performance in practical situations, using an evaluation framework specifically proposed for hierarchies. In conclusion, this thesis gives new theoretical and algorithmic background on the hierarchization of graph-based image segmentation. Our contributions lead to efficient and exact algorithms to compute a hierarchical graph-based image segmentation method, which is practical for its usage in image analysis and computer vision.
id UFMG_eadbd6358aa6c964fc2f673e353b61aa
oai_identifier_str oai:repositorio.ufmg.br:1843/58412
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Arnaldo de Albuquerque Araújohttp://lattes.cnpq.br/3059520185406581Jean CoustyYukiko Kenmochihttp://lattes.cnpq.br/3239895135949017Edward Jorge Yuri Cayllahua-Cahuina2023-09-04T18:15:33Z2023-09-04T18:15:33Z2023-05-09http://hdl.handle.net/1843/58412Image segmentation is an open problem in computer vision that has been extensively investigated for many years. The task of segmenting an image involves dividing the pixels of an image into different pieces, where each piece represents a distinguished characteristic in the image. There are two general approaches that have been developed for image segmentation: flat-image segmentation and hierarchical image segmentation. In flat-image segmentation, the algorithm aims to capture in a single partition all the distinguishable elements in the image. The objects in an image are composed of several details; in a flat-image segmentation approach, such details and their relationships are not considered. This means there is no structure or idea of the composition of details for the objects of the image. On the other hand, hierarchical image segmentation tackles the multi-scale nature of an image and produces a hierarchical image representation. The literature about flat-image segmentation algorithms is ample and currently has a more established theoretical background than hierarchical image segmentation. From a theoretical and algorithmic perspective, there are few methods well understood in hierar- chical segmentation; consequently, there is a gap between the well-established theoretical studies made for flat segmentation compared to hierarchical segmentation, such gap gives us a great opportunity for research on the theoretical and algorithmic aspects of hierar- chical segmentation. This thesis studies the theoretical and algorithmic notions for a hierarchical image segmentation algorithm. We examine and analyze a well-established graph-based flat im- age segmentation method and we extend it to a hierarchical image segmentation approach. The main contributions of this thesis are the following:• A hierarchical graph-based image segmentation method: we propose a method that, similarly to the extension of watersheds from flat to hierarchical, one level of the resulting hierarchy corresponds to one instance of the flat graph-based segmentation problem. • A theoretical background for hierarchizing a graph-based image segmentation method: we elaborate a precise formalism to study the formal properties to hierarchize a graph-based segmentation method. As a result of this theoretical background, we are able to propose efficient and exact algorithms to compute a hierarchical image segmentation method. • A series of strategies for the identification of key hyper-parameters of the method: we study the identification of key hyper-parameters of our hierarchical graph-based method and propose new strategies to set up these hyper-parameters. • An extension of measures for the original graph-based segmentation: we propose a generalization on the notion of relevance measure originally used by the graph- based method. Thanks to our generalization, we are able to include new relevance measures in the hierarchical graph-based image segmentation method. The new relevance measures produce hierarchies that give more importance to regions that contain certain characteristics. • The demonstration of good performance in a practical evaluation: we validate and show that all of our proposals have a good performance in practical situations, using an evaluation framework specifically proposed for hierarchies. In conclusion, this thesis gives new theoretical and algorithmic background on the hierarchization of graph-based image segmentation. Our contributions lead to efficient and exact algorithms to compute a hierarchical graph-based image segmentation method, which is practical for its usage in image analysis and computer vision.A segmentação de imagens ´e um problema aberto na visão computacional que tem sido extensivamente investigado por muitos anos. A tarefa de segmentar uma imagem envolve dividir os pixels de uma imagem em diferentes partes, onde cada parte representa uma característica distinta na imagem. Existem duas abordagens gerais que foram desenvolvidas para a segmentação de imagens: segmentação de imagem plana e segmentação de imagem hierárquica. Em uma segmentação de imagem plana, o algoritmo visa capturar em uma ´única partição todos os elementos distinguíveis na imagem. Os objetos de uma imagem são compostos de vários detalhes; em uma abordagem de segmentação de imagem plana, tais detalhes e seus relacionamentos não são considerados. Isso significa que não há estrutura ou ideia de composição de detalhes para os objetos da imagem. Por outro lado, a segmentação hierárquica de imagens aborda a natureza multi-escalar de uma imagem e produz uma representação hierárquica da imagem. A literatura sobre algoritmos de segmentação plana de imagens ´e muito ampla e atualmente possui fundamentos teóricos mais estabelecidos em comparação com a segmentação hierárquica de imagens. Do ponto de vista teórico e algorítmico, existem poucos métodos bem compreendidos na segmentação hierárquica; consequentemente, existe uma brecha entre os estudos teóricos bem estabelecidos feitos para segmentação plana em comparação com a segmentação hierárquica, tal brecha nos d´a uma grande oportunidade para pesquisas sobre os aspectos teóricos e algorítmicos da segmentação hierárquica. Nesta tese, estudamos as noções teóricas e algorítmicas para um algoritmo de segmentação hierárquica de imagens. Examinamos e analisamos um m´método de segmentação de imagens planas baseado em grafos bem estabelecido e o estendemos para uma abordagem de segmentação de imagens hierárquica. As principais contribuições desta tese são as seguintes: •Um m´método de segmentação hierárquico de imagens baseado em grafos: propomos um m´método no qual, similarmente `a extensão de watersheds de segmentação plana para segmentação hierárquica, um n´nível da hierarquia resultante corresponde a uma instância do problema de segmentação plana baseado em grafos planos. • Uma base teórica para hierarquizar um m´método de segmentação de imagens baseado em grafos: elaboramos um formalismo preciso para estudar as propriedades formais para hierarquizar um m´método de segmentação baseado em grafos. Como resultado desta base teórica, somos capazes de propor algoritmos eficientes e exatos para produzir um m´método de segmentação hierárquica de imagens. • Uma série de estratégias para a identificação de hiper parâmetros do m´método: estudamos a identificação de hiper parâmetros de nosso m´método baseado em grafos hierárquicos e propomos novas estratégias para configurar esses hiper parâmetros. • Uma extensão da segmentação baseada em grafos original: propomos uma generalização sobre a noção de medida de relevância originalmente usada pelo m´método baseado em grafos, tal generalização nos permite produzir hierarquias que dão mais importância a regiões que contem certas características. • A demonstração de bom desempenho em uma avaliação prática: validamos e mostramos que todas as nossas propostas têm um bom desempenho em situações práticas, utilizando um framework de avaliação especificamente proposto para hierarquias. Em conclusão, esta tese fornece uma nova base teórica e algorítmica sobre a hierarquização de uma segmentação de imagens baseada em grafos. Nossas contribuições levam a algoritmos eficientes e exatos para calcular um m´método de segmentação hierárquica de imagens baseado em grafos, que ´e prático para seu uso em análise de imagens e visão computacional.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Ciência da ComputaçãoUFMGBrasilICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃOhttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessComputação – TesesSegmentação de imagens - TesesAnálise hierárquica – TesesAlgoritmo incremental – TesesImage segmentationHierarchical analysisQuasi-flat zoneIncremental algorithAlgorithms for hierarchical graph-based image segmentationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALtesisForUFMG.pdftesisForUFMG.pdfapplication/pdf18577229https://repositorio.ufmg.br/bitstream/1843/58412/1/tesisForUFMG.pdf43b1b23bf081817a0080ddbcdfb928e9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/58412/3/license.txtcda590c95a0b51b4d15f60c9642ca272MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufmg.br/bitstream/1843/58412/2/license_rdfcfd6801dba008cb6adbd9838b81582abMD521843/584122023-09-04 15:15:33.682oai:repositorio.ufmg.br:1843/58412TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2023-09-04T18:15:33Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Algorithms for hierarchical graph-based image segmentation
title Algorithms for hierarchical graph-based image segmentation
spellingShingle Algorithms for hierarchical graph-based image segmentation
Edward Jorge Yuri Cayllahua-Cahuina
Image segmentation
Hierarchical analysis
Quasi-flat zone
Incremental algorith
Computação – Teses
Segmentação de imagens - Teses
Análise hierárquica – Teses
Algoritmo incremental – Teses
title_short Algorithms for hierarchical graph-based image segmentation
title_full Algorithms for hierarchical graph-based image segmentation
title_fullStr Algorithms for hierarchical graph-based image segmentation
title_full_unstemmed Algorithms for hierarchical graph-based image segmentation
title_sort Algorithms for hierarchical graph-based image segmentation
author Edward Jorge Yuri Cayllahua-Cahuina
author_facet Edward Jorge Yuri Cayllahua-Cahuina
author_role author
dc.contributor.advisor1.fl_str_mv Arnaldo de Albuquerque Araújo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3059520185406581
dc.contributor.advisor-co1.fl_str_mv Jean Cousty
dc.contributor.advisor-co2.fl_str_mv Yukiko Kenmochi
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3239895135949017
dc.contributor.author.fl_str_mv Edward Jorge Yuri Cayllahua-Cahuina
contributor_str_mv Arnaldo de Albuquerque Araújo
Jean Cousty
Yukiko Kenmochi
dc.subject.por.fl_str_mv Image segmentation
Hierarchical analysis
Quasi-flat zone
Incremental algorith
topic Image segmentation
Hierarchical analysis
Quasi-flat zone
Incremental algorith
Computação – Teses
Segmentação de imagens - Teses
Análise hierárquica – Teses
Algoritmo incremental – Teses
dc.subject.other.pt_BR.fl_str_mv Computação – Teses
Segmentação de imagens - Teses
Análise hierárquica – Teses
Algoritmo incremental – Teses
description Image segmentation is an open problem in computer vision that has been extensively investigated for many years. The task of segmenting an image involves dividing the pixels of an image into different pieces, where each piece represents a distinguished characteristic in the image. There are two general approaches that have been developed for image segmentation: flat-image segmentation and hierarchical image segmentation. In flat-image segmentation, the algorithm aims to capture in a single partition all the distinguishable elements in the image. The objects in an image are composed of several details; in a flat-image segmentation approach, such details and their relationships are not considered. This means there is no structure or idea of the composition of details for the objects of the image. On the other hand, hierarchical image segmentation tackles the multi-scale nature of an image and produces a hierarchical image representation. The literature about flat-image segmentation algorithms is ample and currently has a more established theoretical background than hierarchical image segmentation. From a theoretical and algorithmic perspective, there are few methods well understood in hierar- chical segmentation; consequently, there is a gap between the well-established theoretical studies made for flat segmentation compared to hierarchical segmentation, such gap gives us a great opportunity for research on the theoretical and algorithmic aspects of hierar- chical segmentation. This thesis studies the theoretical and algorithmic notions for a hierarchical image segmentation algorithm. We examine and analyze a well-established graph-based flat im- age segmentation method and we extend it to a hierarchical image segmentation approach. The main contributions of this thesis are the following:• A hierarchical graph-based image segmentation method: we propose a method that, similarly to the extension of watersheds from flat to hierarchical, one level of the resulting hierarchy corresponds to one instance of the flat graph-based segmentation problem. • A theoretical background for hierarchizing a graph-based image segmentation method: we elaborate a precise formalism to study the formal properties to hierarchize a graph-based segmentation method. As a result of this theoretical background, we are able to propose efficient and exact algorithms to compute a hierarchical image segmentation method. • A series of strategies for the identification of key hyper-parameters of the method: we study the identification of key hyper-parameters of our hierarchical graph-based method and propose new strategies to set up these hyper-parameters. • An extension of measures for the original graph-based segmentation: we propose a generalization on the notion of relevance measure originally used by the graph- based method. Thanks to our generalization, we are able to include new relevance measures in the hierarchical graph-based image segmentation method. The new relevance measures produce hierarchies that give more importance to regions that contain certain characteristics. • The demonstration of good performance in a practical evaluation: we validate and show that all of our proposals have a good performance in practical situations, using an evaluation framework specifically proposed for hierarchies. In conclusion, this thesis gives new theoretical and algorithmic background on the hierarchization of graph-based image segmentation. Our contributions lead to efficient and exact algorithms to compute a hierarchical graph-based image segmentation method, which is practical for its usage in image analysis and computer vision.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-09-04T18:15:33Z
dc.date.available.fl_str_mv 2023-09-04T18:15:33Z
dc.date.issued.fl_str_mv 2023-05-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/58412
url http://hdl.handle.net/1843/58412
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICX - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/58412/1/tesisForUFMG.pdf
https://repositorio.ufmg.br/bitstream/1843/58412/3/license.txt
https://repositorio.ufmg.br/bitstream/1843/58412/2/license_rdf
bitstream.checksum.fl_str_mv 43b1b23bf081817a0080ddbcdfb928e9
cda590c95a0b51b4d15f60c9642ca272
cfd6801dba008cb6adbd9838b81582ab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589640299479040