Previsão da vazão mássica em uma máquina frigorífica utilizando redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Vinicius David Fonseca
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/45082
Resumo: Measuring mass flow rate in refrigeration systems with flow meters can be expensive when taking into account the cost of the equipment itself and the costs related to installation and maintenance. A model based on Artificial Neural Networks (ANNs) can be used to predict the value of the mass flow, at low cost, through easily observed and measured parameters, like temperatures. Additionally, well-known correlations to calculate parameters that directly influence the mass flow rate can be used as input data for the ANN to improve its accuracy. Within this context, the present study aims to develop a Multilayer Perceptrons (MLP) model to predict the mass flow rate of a refrigeration systems. Later, it is presented an alternative mass flow rate meter, using an ANN model programmed in a microcontrolled circuit with only three temperatures as inputs, that was developed and tests using the software Proteus. To develop the ANN model, experimental data were collected in a refrigeration machine in several operating points. Step disturbances were introduced in the mass flow rate to produce transient data. Two different data set were considered in the training process. The first data set contained only steady-state data and in the second data set there were steady-state plus transient data. The mass flow rate estimated through the ANN presented an average error of 0.79 % when considering steady-state and transient data in the training process, and 0.81 % when considering only steadystate data in the training procedure. In both cases, the average error was smaller than the mass flow meter uncertainty.
id UFMG_eaee375d8844d084eef001bcc9889310
oai_identifier_str oai:repositorio.ufmg.br:1843/45082
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Previsão da vazão mássica em uma máquina frigorífica utilizando redes neurais artificiaisMass flow prediction in a refrigeration machine using artificial neural networksEngenharia mecânicaRedes Neurais (Computação)Máquinas térmicasPrevisão da vazão mássicaMáquinas frigoríficasRedes neurais artificiaisMeasuring mass flow rate in refrigeration systems with flow meters can be expensive when taking into account the cost of the equipment itself and the costs related to installation and maintenance. A model based on Artificial Neural Networks (ANNs) can be used to predict the value of the mass flow, at low cost, through easily observed and measured parameters, like temperatures. Additionally, well-known correlations to calculate parameters that directly influence the mass flow rate can be used as input data for the ANN to improve its accuracy. Within this context, the present study aims to develop a Multilayer Perceptrons (MLP) model to predict the mass flow rate of a refrigeration systems. Later, it is presented an alternative mass flow rate meter, using an ANN model programmed in a microcontrolled circuit with only three temperatures as inputs, that was developed and tests using the software Proteus. To develop the ANN model, experimental data were collected in a refrigeration machine in several operating points. Step disturbances were introduced in the mass flow rate to produce transient data. Two different data set were considered in the training process. The first data set contained only steady-state data and in the second data set there were steady-state plus transient data. The mass flow rate estimated through the ANN presented an average error of 0.79 % when considering steady-state and transient data in the training process, and 0.81 % when considering only steadystate data in the training procedure. In both cases, the average error was smaller than the mass flow meter uncertainty.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de Minas Gerais2022-09-09T19:02:25Z2025-09-09T00:28:00Z2022-09-09T19:02:25Z2022-05-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/45082porVinicius David Fonsecainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:28:00Zoai:repositorio.ufmg.br:1843/45082Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:28Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Previsão da vazão mássica em uma máquina frigorífica utilizando redes neurais artificiais
Mass flow prediction in a refrigeration machine using artificial neural networks
title Previsão da vazão mássica em uma máquina frigorífica utilizando redes neurais artificiais
spellingShingle Previsão da vazão mássica em uma máquina frigorífica utilizando redes neurais artificiais
Vinicius David Fonseca
Engenharia mecânica
Redes Neurais (Computação)
Máquinas térmicas
Previsão da vazão mássica
Máquinas frigoríficas
Redes neurais artificiais
title_short Previsão da vazão mássica em uma máquina frigorífica utilizando redes neurais artificiais
title_full Previsão da vazão mássica em uma máquina frigorífica utilizando redes neurais artificiais
title_fullStr Previsão da vazão mássica em uma máquina frigorífica utilizando redes neurais artificiais
title_full_unstemmed Previsão da vazão mássica em uma máquina frigorífica utilizando redes neurais artificiais
title_sort Previsão da vazão mássica em uma máquina frigorífica utilizando redes neurais artificiais
author Vinicius David Fonseca
author_facet Vinicius David Fonseca
author_role author
dc.contributor.author.fl_str_mv Vinicius David Fonseca
dc.subject.por.fl_str_mv Engenharia mecânica
Redes Neurais (Computação)
Máquinas térmicas
Previsão da vazão mássica
Máquinas frigoríficas
Redes neurais artificiais
topic Engenharia mecânica
Redes Neurais (Computação)
Máquinas térmicas
Previsão da vazão mássica
Máquinas frigoríficas
Redes neurais artificiais
description Measuring mass flow rate in refrigeration systems with flow meters can be expensive when taking into account the cost of the equipment itself and the costs related to installation and maintenance. A model based on Artificial Neural Networks (ANNs) can be used to predict the value of the mass flow, at low cost, through easily observed and measured parameters, like temperatures. Additionally, well-known correlations to calculate parameters that directly influence the mass flow rate can be used as input data for the ANN to improve its accuracy. Within this context, the present study aims to develop a Multilayer Perceptrons (MLP) model to predict the mass flow rate of a refrigeration systems. Later, it is presented an alternative mass flow rate meter, using an ANN model programmed in a microcontrolled circuit with only three temperatures as inputs, that was developed and tests using the software Proteus. To develop the ANN model, experimental data were collected in a refrigeration machine in several operating points. Step disturbances were introduced in the mass flow rate to produce transient data. Two different data set were considered in the training process. The first data set contained only steady-state data and in the second data set there were steady-state plus transient data. The mass flow rate estimated through the ANN presented an average error of 0.79 % when considering steady-state and transient data in the training process, and 0.81 % when considering only steadystate data in the training procedure. In both cases, the average error was smaller than the mass flow meter uncertainty.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-09T19:02:25Z
2022-09-09T19:02:25Z
2022-05-27
2025-09-09T00:28:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/45082
url https://hdl.handle.net/1843/45082
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413937720885248