Aceleração de algoritmos de sumarização de vídeos com processadroes gráficos (GPUs) e multicore CPUs

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Suellen Silva de Almeida
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/ESBF-9TENPA
Resumo: The recent and fast evolution of digital media have stimulated the creation, storage and distribution of data, such as digital videos, generating a large volume of data and requiring efficient technologies to increase the usability of these data. Video summarization methods consist of generating concise summaries of video contents and it enable faster browsing, indexing and accessing of large video collections. However, these methods often perform slow with large duration and high quality video data. One way to reduce this long time of execution is to develop parallel algorithms, using the advantages of the recent computer architectures that allow high parallelism, i.e., Graphics Processor Units (GPUs) and multicore CPUs. This work proposes parallelizations of two video summarization methods. The former is based on color feature extraction from video frames and k-means clustering algorithm and the latter is based on temporal video segmentation and visual words obtained by local descriptors. For the two methods, some implementations were considered: GPUs, multicore CPUs, and ultimately a distribution of computations steps onto both hardware to maximise performance. The experiments were performed using 240 videos varying frame resolution (320 X 240, 640 X 360, 1280 X 720 e 1920 X1080 pixels) and video length (1,3,5,10,20 and 30 minutes). The results shows that the implementations overcome the sequential version of both methods, keeping the quality of the summaries.
id UFMG_f3289bed575fcfb2a8fccd921bfb245d
oai_identifier_str oai:repositorio.ufmg.br:1843/ESBF-9TENPA
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Aceleração de algoritmos de sumarização de vídeos com processadroes gráficos (GPUs) e multicore CPUsComputaçãoProcessamento de imagens Técnicas digitaisAlgoritmos paralelosProcessamento de vídeosSumarização de vídeosGPUsMulticore CPUsAlgoritmos paralelosThe recent and fast evolution of digital media have stimulated the creation, storage and distribution of data, such as digital videos, generating a large volume of data and requiring efficient technologies to increase the usability of these data. Video summarization methods consist of generating concise summaries of video contents and it enable faster browsing, indexing and accessing of large video collections. However, these methods often perform slow with large duration and high quality video data. One way to reduce this long time of execution is to develop parallel algorithms, using the advantages of the recent computer architectures that allow high parallelism, i.e., Graphics Processor Units (GPUs) and multicore CPUs. This work proposes parallelizations of two video summarization methods. The former is based on color feature extraction from video frames and k-means clustering algorithm and the latter is based on temporal video segmentation and visual words obtained by local descriptors. For the two methods, some implementations were considered: GPUs, multicore CPUs, and ultimately a distribution of computations steps onto both hardware to maximise performance. The experiments were performed using 240 videos varying frame resolution (320 X 240, 640 X 360, 1280 X 720 e 1920 X1080 pixels) and video length (1,3,5,10,20 and 30 minutes). The results shows that the implementations overcome the sequential version of both methods, keeping the quality of the summaries.Universidade Federal de Minas Gerais2019-08-10T07:38:37Z2025-09-09T00:58:56Z2019-08-10T07:38:37Z2014-08-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-9TENPASuellen Silva de Almeidainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:58:56Zoai:repositorio.ufmg.br:1843/ESBF-9TENPARepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:58:56Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Aceleração de algoritmos de sumarização de vídeos com processadroes gráficos (GPUs) e multicore CPUs
title Aceleração de algoritmos de sumarização de vídeos com processadroes gráficos (GPUs) e multicore CPUs
spellingShingle Aceleração de algoritmos de sumarização de vídeos com processadroes gráficos (GPUs) e multicore CPUs
Suellen Silva de Almeida
Computação
Processamento de imagens Técnicas digitais
Algoritmos paralelos
Processamento de vídeos
Sumarização de vídeos
GPUs
Multicore CPUs
Algoritmos paralelos
title_short Aceleração de algoritmos de sumarização de vídeos com processadroes gráficos (GPUs) e multicore CPUs
title_full Aceleração de algoritmos de sumarização de vídeos com processadroes gráficos (GPUs) e multicore CPUs
title_fullStr Aceleração de algoritmos de sumarização de vídeos com processadroes gráficos (GPUs) e multicore CPUs
title_full_unstemmed Aceleração de algoritmos de sumarização de vídeos com processadroes gráficos (GPUs) e multicore CPUs
title_sort Aceleração de algoritmos de sumarização de vídeos com processadroes gráficos (GPUs) e multicore CPUs
author Suellen Silva de Almeida
author_facet Suellen Silva de Almeida
author_role author
dc.contributor.author.fl_str_mv Suellen Silva de Almeida
dc.subject.por.fl_str_mv Computação
Processamento de imagens Técnicas digitais
Algoritmos paralelos
Processamento de vídeos
Sumarização de vídeos
GPUs
Multicore CPUs
Algoritmos paralelos
topic Computação
Processamento de imagens Técnicas digitais
Algoritmos paralelos
Processamento de vídeos
Sumarização de vídeos
GPUs
Multicore CPUs
Algoritmos paralelos
description The recent and fast evolution of digital media have stimulated the creation, storage and distribution of data, such as digital videos, generating a large volume of data and requiring efficient technologies to increase the usability of these data. Video summarization methods consist of generating concise summaries of video contents and it enable faster browsing, indexing and accessing of large video collections. However, these methods often perform slow with large duration and high quality video data. One way to reduce this long time of execution is to develop parallel algorithms, using the advantages of the recent computer architectures that allow high parallelism, i.e., Graphics Processor Units (GPUs) and multicore CPUs. This work proposes parallelizations of two video summarization methods. The former is based on color feature extraction from video frames and k-means clustering algorithm and the latter is based on temporal video segmentation and visual words obtained by local descriptors. For the two methods, some implementations were considered: GPUs, multicore CPUs, and ultimately a distribution of computations steps onto both hardware to maximise performance. The experiments were performed using 240 videos varying frame resolution (320 X 240, 640 X 360, 1280 X 720 e 1920 X1080 pixels) and video length (1,3,5,10,20 and 30 minutes). The results shows that the implementations overcome the sequential version of both methods, keeping the quality of the summaries.
publishDate 2014
dc.date.none.fl_str_mv 2014-08-22
2019-08-10T07:38:37Z
2019-08-10T07:38:37Z
2025-09-09T00:58:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/ESBF-9TENPA
url https://hdl.handle.net/1843/ESBF-9TENPA
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414114566373376