Investigação da programação genética para explicabilidade em modelos de aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Leonardo Augusto Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/78202
Resumo: Advances in Machine Learning (ML) are transforming how researchers conduct science in sensitive domains such as healthcare, education, justice, and criminal investigation. In response to this transformation, Explainable Artificial Intelligence (XAI) has emerged as a crucial research topic. This paper presents an innovative method called GPX (Genetic Programming Explainer), based on Genetic Programming for symbolic regression, aiming to provide clear and local explanations for decisions made by AI systems. GPX generates a set of samples in the neighborhood of the prediction to be explained and creates a local explanation model. The tree structure generated by GPX provides a symbolically, analytically comprehensible, and possibly non-linear expression that reflects the local behavior of the complex model. The use of partial derivatives from Genetic Programming results allows GPX to effectively communicate feature importance, producing user-friendly explanations. Additionally, the method can formulate counterfactual explanations, offering deeper insights into model behavior. Through comprehensive experiments on diverse datasets, GPX demonstrated excellence in four crucial aspects of XAI: providing understandable arguments, maintaining fidelity in classification and regression tasks, ensuring explanation stability, and promoting novel explanations. Compared to existing techniques such as LIME, GPX rivals or surpasses these approaches, as demonstrated by fidelity metrics. An innovative aspect of this work is the introduction of cosine similarity as an XAI strategy, which increases trust in the provided explanations. Despite the stochastic nature of Genetic Programming, the explanations generated by GPX remain stable, as validated by the stability metric. In summary, GPX shows promise in delivering informative arguments, ensuring fidelity and stability of explanations, and fostering the generation of novel explanations. This work represents an advance in XAI methods and encourages the exploration of symbolic regression via Genetic Programming to enhance explainability.
id UFMG_fcb18aa2976fd698c70e142a5fc3df1f
oai_identifier_str oai:repositorio.ufmg.br:1843/78202
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Investigação da programação genética para explicabilidade em modelos de aprendizado de máquinaEngenharia elétricaAprendizado do computadorInteligência artificialProgramação genética (Computação)InterpretabilidadeAprendizado de MáquinaProgramação GenéticaExplicabilidadeAdvances in Machine Learning (ML) are transforming how researchers conduct science in sensitive domains such as healthcare, education, justice, and criminal investigation. In response to this transformation, Explainable Artificial Intelligence (XAI) has emerged as a crucial research topic. This paper presents an innovative method called GPX (Genetic Programming Explainer), based on Genetic Programming for symbolic regression, aiming to provide clear and local explanations for decisions made by AI systems. GPX generates a set of samples in the neighborhood of the prediction to be explained and creates a local explanation model. The tree structure generated by GPX provides a symbolically, analytically comprehensible, and possibly non-linear expression that reflects the local behavior of the complex model. The use of partial derivatives from Genetic Programming results allows GPX to effectively communicate feature importance, producing user-friendly explanations. Additionally, the method can formulate counterfactual explanations, offering deeper insights into model behavior. Through comprehensive experiments on diverse datasets, GPX demonstrated excellence in four crucial aspects of XAI: providing understandable arguments, maintaining fidelity in classification and regression tasks, ensuring explanation stability, and promoting novel explanations. Compared to existing techniques such as LIME, GPX rivals or surpasses these approaches, as demonstrated by fidelity metrics. An innovative aspect of this work is the introduction of cosine similarity as an XAI strategy, which increases trust in the provided explanations. Despite the stochastic nature of Genetic Programming, the explanations generated by GPX remain stable, as validated by the stability metric. In summary, GPX shows promise in delivering informative arguments, ensuring fidelity and stability of explanations, and fostering the generation of novel explanations. This work represents an advance in XAI methods and encourages the exploration of symbolic regression via Genetic Programming to enhance explainability.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de Minas Gerais2024-11-22T13:46:22Z2025-09-08T23:44:36Z2024-11-22T13:46:22Z2024-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/78202porLeonardo Augusto Ferreirainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:44:36Zoai:repositorio.ufmg.br:1843/78202Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:44:36Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Investigação da programação genética para explicabilidade em modelos de aprendizado de máquina
title Investigação da programação genética para explicabilidade em modelos de aprendizado de máquina
spellingShingle Investigação da programação genética para explicabilidade em modelos de aprendizado de máquina
Leonardo Augusto Ferreira
Engenharia elétrica
Aprendizado do computador
Inteligência artificial
Programação genética (Computação)
Interpretabilidade
Aprendizado de Máquina
Programação Genética
Explicabilidade
title_short Investigação da programação genética para explicabilidade em modelos de aprendizado de máquina
title_full Investigação da programação genética para explicabilidade em modelos de aprendizado de máquina
title_fullStr Investigação da programação genética para explicabilidade em modelos de aprendizado de máquina
title_full_unstemmed Investigação da programação genética para explicabilidade em modelos de aprendizado de máquina
title_sort Investigação da programação genética para explicabilidade em modelos de aprendizado de máquina
author Leonardo Augusto Ferreira
author_facet Leonardo Augusto Ferreira
author_role author
dc.contributor.author.fl_str_mv Leonardo Augusto Ferreira
dc.subject.por.fl_str_mv Engenharia elétrica
Aprendizado do computador
Inteligência artificial
Programação genética (Computação)
Interpretabilidade
Aprendizado de Máquina
Programação Genética
Explicabilidade
topic Engenharia elétrica
Aprendizado do computador
Inteligência artificial
Programação genética (Computação)
Interpretabilidade
Aprendizado de Máquina
Programação Genética
Explicabilidade
description Advances in Machine Learning (ML) are transforming how researchers conduct science in sensitive domains such as healthcare, education, justice, and criminal investigation. In response to this transformation, Explainable Artificial Intelligence (XAI) has emerged as a crucial research topic. This paper presents an innovative method called GPX (Genetic Programming Explainer), based on Genetic Programming for symbolic regression, aiming to provide clear and local explanations for decisions made by AI systems. GPX generates a set of samples in the neighborhood of the prediction to be explained and creates a local explanation model. The tree structure generated by GPX provides a symbolically, analytically comprehensible, and possibly non-linear expression that reflects the local behavior of the complex model. The use of partial derivatives from Genetic Programming results allows GPX to effectively communicate feature importance, producing user-friendly explanations. Additionally, the method can formulate counterfactual explanations, offering deeper insights into model behavior. Through comprehensive experiments on diverse datasets, GPX demonstrated excellence in four crucial aspects of XAI: providing understandable arguments, maintaining fidelity in classification and regression tasks, ensuring explanation stability, and promoting novel explanations. Compared to existing techniques such as LIME, GPX rivals or surpasses these approaches, as demonstrated by fidelity metrics. An innovative aspect of this work is the introduction of cosine similarity as an XAI strategy, which increases trust in the provided explanations. Despite the stochastic nature of Genetic Programming, the explanations generated by GPX remain stable, as validated by the stability metric. In summary, GPX shows promise in delivering informative arguments, ensuring fidelity and stability of explanations, and fostering the generation of novel explanations. This work represents an advance in XAI methods and encourages the exploration of symbolic regression via Genetic Programming to enhance explainability.
publishDate 2024
dc.date.none.fl_str_mv 2024-11-22T13:46:22Z
2024-11-22T13:46:22Z
2024-10-01
2025-09-08T23:44:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/78202
url https://hdl.handle.net/1843/78202
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414073428639744