A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Fundação Universidade Federal de Mato Grosso do Sul
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufms.br/handle/123456789/12732 |
Resumo: | Microsecond-scale datacenter applications demand strict latency guarantees while operating under high load and variable service times. This environment often involves a mix of extremely short and long requests, where short requests — lasting just a few microseconds — are frequently delayed by longer ones due to Head-of-Line (HOL) blocking, leading to higher latencies, especially at the tail. However, existing approaches to mitigate HOL blocking, such as centralized dispatching, fine-grained preemption, and resource reservation, face fundamental scalability limitations. This work introduces Synergy, a cooperative, application-aware scheduling system that uses direct feedback from applications to prioritize short requests, dynamically adapts scheduling parameters, and avoids unnecessary preemptions. Synergy adopts a decentralized architecture with distributed queues, job-aware preemption, and dynamic quantum sizing. By eliminating centralized classification and using real-time application measurements, Synergy effectively mitigates HOL blocking without compromising throughput. Synergy outperforms state-of-the-art systems, achieving up to 43% higher throughput while meeting microsecond-scale service-level objectives. |
| id |
UFMS_29faa589f27dcebe993cee1aa3da3c9a |
|---|---|
| oai_identifier_str |
oai:repositorio.ufms.br:123456789/12732 |
| network_acronym_str |
UFMS |
| network_name_str |
Repositório Institucional da UFMS |
| repository_id_str |
|
| spelling |
2025-10-03T14:14:55Z2025-10-03T14:14:55Z2025https://repositorio.ufms.br/handle/123456789/12732Microsecond-scale datacenter applications demand strict latency guarantees while operating under high load and variable service times. This environment often involves a mix of extremely short and long requests, where short requests — lasting just a few microseconds — are frequently delayed by longer ones due to Head-of-Line (HOL) blocking, leading to higher latencies, especially at the tail. However, existing approaches to mitigate HOL blocking, such as centralized dispatching, fine-grained preemption, and resource reservation, face fundamental scalability limitations. This work introduces Synergy, a cooperative, application-aware scheduling system that uses direct feedback from applications to prioritize short requests, dynamically adapts scheduling parameters, and avoids unnecessary preemptions. Synergy adopts a decentralized architecture with distributed queues, job-aware preemption, and dynamic quantum sizing. By eliminating centralized classification and using real-time application measurements, Synergy effectively mitigates HOL blocking without compromising throughput. Synergy outperforms state-of-the-art systems, achieving up to 43% higher throughput while meeting microsecond-scale service-level objectives.Aplicações de centros de dados que operam na escala de microssegundos exigem garantias rigorosas de latência ao operar sob alta carga e tempos de serviço variáveis. Esse ambiente frequentemente envolve uma mistura de requisições extremamente curtas e longas, onde as curtas — que duram somente alguns microssegundos — são frequentemente atrasadas pelas mais longas devido ao bloqueio problema de Head-of-Line (HOL) blocking, resultando em maiores latências, especialmente na cauda da distribuição. No entanto, abordagens existentes para mitigar o HOL blocking, como despacho centralizado, preempção de granularidade fina e reserva de recursos, enfrentam limitações fundamentais de escalabilidade. Este trabalho apresenta Synergy, um sistema de escalonamento cooperativo e consciente da aplicação, que utiliza feedback direto das aplicações para priorizar requisições curtas, adapta dinamicamente os parâmetros de escalonamento e evita preempções desnecessárias. Synergy adota uma arquitetura descentralizada, com filas distribuídas, preempção sensível ao tipo de tarefa e ajuste dinâmico de quantum. Ao eliminar a classificação centralizada e utilizar medições em tempo real das aplicações, Synergy mitiga de forma eficaz o HOL blocking sem comprometer a vazão. Synergy supera os sistemas mais avançados do estado da arte, alcançando até 43% mais vazão enquanto atende objetivos de nível de serviço em escala de microssegundos.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilDatacenterHead-of-Line BlockingUser-Level SchedulerA Fast and Scalable Feedback-Driven Scheduler for Datacenter Applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisRonaldo Alves FerreiraMAYCO SOUZA BERGHETTIinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALDissertation_2025___Mayco.pdfDissertation_2025___Mayco.pdfapplication/pdf1317420https://repositorio.ufms.br/bitstream/123456789/12732/-1/Dissertation_2025___Mayco.pdf2cfb3bbcb2ecb20dfa8d62ca1710a0a2MD5-1123456789/127322025-10-03 10:14:57.1oai:repositorio.ufms.br:123456789/12732Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242025-10-03T14:14:57Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
| dc.title.pt_BR.fl_str_mv |
A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications |
| title |
A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications |
| spellingShingle |
A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications MAYCO SOUZA BERGHETTI Datacenter Head-of-Line Blocking User-Level Scheduler |
| title_short |
A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications |
| title_full |
A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications |
| title_fullStr |
A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications |
| title_full_unstemmed |
A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications |
| title_sort |
A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications |
| author |
MAYCO SOUZA BERGHETTI |
| author_facet |
MAYCO SOUZA BERGHETTI |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Ronaldo Alves Ferreira |
| dc.contributor.author.fl_str_mv |
MAYCO SOUZA BERGHETTI |
| contributor_str_mv |
Ronaldo Alves Ferreira |
| dc.subject.por.fl_str_mv |
Datacenter Head-of-Line Blocking User-Level Scheduler |
| topic |
Datacenter Head-of-Line Blocking User-Level Scheduler |
| description |
Microsecond-scale datacenter applications demand strict latency guarantees while operating under high load and variable service times. This environment often involves a mix of extremely short and long requests, where short requests — lasting just a few microseconds — are frequently delayed by longer ones due to Head-of-Line (HOL) blocking, leading to higher latencies, especially at the tail. However, existing approaches to mitigate HOL blocking, such as centralized dispatching, fine-grained preemption, and resource reservation, face fundamental scalability limitations. This work introduces Synergy, a cooperative, application-aware scheduling system that uses direct feedback from applications to prioritize short requests, dynamically adapts scheduling parameters, and avoids unnecessary preemptions. Synergy adopts a decentralized architecture with distributed queues, job-aware preemption, and dynamic quantum sizing. By eliminating centralized classification and using real-time application measurements, Synergy effectively mitigates HOL blocking without compromising throughput. Synergy outperforms state-of-the-art systems, achieving up to 43% higher throughput while meeting microsecond-scale service-level objectives. |
| publishDate |
2025 |
| dc.date.accessioned.fl_str_mv |
2025-10-03T14:14:55Z |
| dc.date.available.fl_str_mv |
2025-10-03T14:14:55Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/12732 |
| url |
https://repositorio.ufms.br/handle/123456789/12732 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
| dc.publisher.initials.fl_str_mv |
UFMS |
| dc.publisher.country.fl_str_mv |
Brasil |
| publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
| instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
| instacron_str |
UFMS |
| institution |
UFMS |
| reponame_str |
Repositório Institucional da UFMS |
| collection |
Repositório Institucional da UFMS |
| bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/12732/-1/Dissertation_2025___Mayco.pdf |
| bitstream.checksum.fl_str_mv |
2cfb3bbcb2ecb20dfa8d62ca1710a0a2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
| repository.mail.fl_str_mv |
ri.prograd@ufms.br |
| _version_ |
1845881979542700032 |