A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: MAYCO SOUZA BERGHETTI
Orientador(a): Ronaldo Alves Ferreira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Fundação Universidade Federal de Mato Grosso do Sul
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufms.br/handle/123456789/12732
Resumo: Microsecond-scale datacenter applications demand strict latency guarantees while operating under high load and variable service times. This environment often involves a mix of extremely short and long requests, where short requests — lasting just a few microseconds — are frequently delayed by longer ones due to Head-of-Line (HOL) blocking, leading to higher latencies, especially at the tail. However, existing approaches to mitigate HOL blocking, such as centralized dispatching, fine-grained preemption, and resource reservation, face fundamental scalability limitations. This work introduces Synergy, a cooperative, application-aware scheduling system that uses direct feedback from applications to prioritize short requests, dynamically adapts scheduling parameters, and avoids unnecessary preemptions. Synergy adopts a decentralized architecture with distributed queues, job-aware preemption, and dynamic quantum sizing. By eliminating centralized classification and using real-time application measurements, Synergy effectively mitigates HOL blocking without compromising throughput. Synergy outperforms state-of-the-art systems, achieving up to 43% higher throughput while meeting microsecond-scale service-level objectives.
id UFMS_29faa589f27dcebe993cee1aa3da3c9a
oai_identifier_str oai:repositorio.ufms.br:123456789/12732
network_acronym_str UFMS
network_name_str Repositório Institucional da UFMS
repository_id_str
spelling 2025-10-03T14:14:55Z2025-10-03T14:14:55Z2025https://repositorio.ufms.br/handle/123456789/12732Microsecond-scale datacenter applications demand strict latency guarantees while operating under high load and variable service times. This environment often involves a mix of extremely short and long requests, where short requests — lasting just a few microseconds — are frequently delayed by longer ones due to Head-of-Line (HOL) blocking, leading to higher latencies, especially at the tail. However, existing approaches to mitigate HOL blocking, such as centralized dispatching, fine-grained preemption, and resource reservation, face fundamental scalability limitations. This work introduces Synergy, a cooperative, application-aware scheduling system that uses direct feedback from applications to prioritize short requests, dynamically adapts scheduling parameters, and avoids unnecessary preemptions. Synergy adopts a decentralized architecture with distributed queues, job-aware preemption, and dynamic quantum sizing. By eliminating centralized classification and using real-time application measurements, Synergy effectively mitigates HOL blocking without compromising throughput. Synergy outperforms state-of-the-art systems, achieving up to 43% higher throughput while meeting microsecond-scale service-level objectives.Aplicações de centros de dados que operam na escala de microssegundos exigem garantias rigorosas de latência ao operar sob alta carga e tempos de serviço variáveis. Esse ambiente frequentemente envolve uma mistura de requisições extremamente curtas e longas, onde as curtas — que duram somente alguns microssegundos — são frequentemente atrasadas pelas mais longas devido ao bloqueio problema de Head-of-Line (HOL) blocking, resultando em maiores latências, especialmente na cauda da distribuição. No entanto, abordagens existentes para mitigar o HOL blocking, como despacho centralizado, preempção de granularidade fina e reserva de recursos, enfrentam limitações fundamentais de escalabilidade. Este trabalho apresenta Synergy, um sistema de escalonamento cooperativo e consciente da aplicação, que utiliza feedback direto das aplicações para priorizar requisições curtas, adapta dinamicamente os parâmetros de escalonamento e evita preempções desnecessárias. Synergy adota uma arquitetura descentralizada, com filas distribuídas, preempção sensível ao tipo de tarefa e ajuste dinâmico de quantum. Ao eliminar a classificação centralizada e utilizar medições em tempo real das aplicações, Synergy mitiga de forma eficaz o HOL blocking sem comprometer a vazão. Synergy supera os sistemas mais avançados do estado da arte, alcançando até 43% mais vazão enquanto atende objetivos de nível de serviço em escala de microssegundos.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilDatacenterHead-of-Line BlockingUser-Level SchedulerA Fast and Scalable Feedback-Driven Scheduler for Datacenter Applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisRonaldo Alves FerreiraMAYCO SOUZA BERGHETTIinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALDissertation_2025___Mayco.pdfDissertation_2025___Mayco.pdfapplication/pdf1317420https://repositorio.ufms.br/bitstream/123456789/12732/-1/Dissertation_2025___Mayco.pdf2cfb3bbcb2ecb20dfa8d62ca1710a0a2MD5-1123456789/127322025-10-03 10:14:57.1oai:repositorio.ufms.br:123456789/12732Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242025-10-03T14:14:57Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false
dc.title.pt_BR.fl_str_mv A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications
title A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications
spellingShingle A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications
MAYCO SOUZA BERGHETTI
Datacenter
Head-of-Line Blocking
User-Level Scheduler
title_short A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications
title_full A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications
title_fullStr A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications
title_full_unstemmed A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications
title_sort A Fast and Scalable Feedback-Driven Scheduler for Datacenter Applications
author MAYCO SOUZA BERGHETTI
author_facet MAYCO SOUZA BERGHETTI
author_role author
dc.contributor.advisor1.fl_str_mv Ronaldo Alves Ferreira
dc.contributor.author.fl_str_mv MAYCO SOUZA BERGHETTI
contributor_str_mv Ronaldo Alves Ferreira
dc.subject.por.fl_str_mv Datacenter
Head-of-Line Blocking
User-Level Scheduler
topic Datacenter
Head-of-Line Blocking
User-Level Scheduler
description Microsecond-scale datacenter applications demand strict latency guarantees while operating under high load and variable service times. This environment often involves a mix of extremely short and long requests, where short requests — lasting just a few microseconds — are frequently delayed by longer ones due to Head-of-Line (HOL) blocking, leading to higher latencies, especially at the tail. However, existing approaches to mitigate HOL blocking, such as centralized dispatching, fine-grained preemption, and resource reservation, face fundamental scalability limitations. This work introduces Synergy, a cooperative, application-aware scheduling system that uses direct feedback from applications to prioritize short requests, dynamically adapts scheduling parameters, and avoids unnecessary preemptions. Synergy adopts a decentralized architecture with distributed queues, job-aware preemption, and dynamic quantum sizing. By eliminating centralized classification and using real-time application measurements, Synergy effectively mitigates HOL blocking without compromising throughput. Synergy outperforms state-of-the-art systems, achieving up to 43% higher throughput while meeting microsecond-scale service-level objectives.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-10-03T14:14:55Z
dc.date.available.fl_str_mv 2025-10-03T14:14:55Z
dc.date.issued.fl_str_mv 2025
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufms.br/handle/123456789/12732
url https://repositorio.ufms.br/handle/123456789/12732
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.publisher.initials.fl_str_mv UFMS
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMS
instname:Universidade Federal de Mato Grosso do Sul (UFMS)
instacron:UFMS
instname_str Universidade Federal de Mato Grosso do Sul (UFMS)
instacron_str UFMS
institution UFMS
reponame_str Repositório Institucional da UFMS
collection Repositório Institucional da UFMS
bitstream.url.fl_str_mv https://repositorio.ufms.br/bitstream/123456789/12732/-1/Dissertation_2025___Mayco.pdf
bitstream.checksum.fl_str_mv 2cfb3bbcb2ecb20dfa8d62ca1710a0a2
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)
repository.mail.fl_str_mv ri.prograd@ufms.br
_version_ 1845881979542700032