Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Fundação Universidade Federal de Mato Grosso do Sul
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufms.br/handle/123456789/5496 |
Resumo: | There is a significant demand for the automation of the location and recognition of objects and people, from the automation of agriculture to systems for automatic measurement of the water level in rivers, all performed by computer vision systems. These markings or labels are currently assigned at the pixel level, a technique called semantic segmentation. However, in a single image there can be several classes, and often these classes are very similar, making it a complex challenge to be worked on. Recently, methods based on Convolutional Neural Networks (CNN) have achieved impressive success in semantic segmentation tasks. This success is due, among other factors, to the inclusion of some context to assist the network, such as the information that one class is more frequent than the other and/or; the information that the dataset has images with a high level of pixel-labeling uncertainty present at the edges. However, these two points mentioned, both class imbalance and pixel-labeling uncertainty, can be further explored. We present an approach that calculates and assigns a pixel-wise weight, considering its class and the uncertainty during the labeling process. Pixel-wise weights are used during training to increase or decrease the importance of the pixels. Some papers are presented demonstrating the use of semantic segmentation techniques with context inclusion, with significant results in comparison with the most relevant methods. In addition, we also present a method for the reconstruction of the area of the object of interest, allowing the reconstruction of the edges of this object. The techniques presented here can be used in a wide variety of segmentation methods, improving their robustness. |
id |
UFMS_8a0fa7c4e647434d1264f3ae653893ca |
---|---|
oai_identifier_str |
oai:repositorio.ufms.br:123456789/5496 |
network_acronym_str |
UFMS |
network_name_str |
Repositório Institucional da UFMS |
repository_id_str |
|
spelling |
2022-12-28T15:31:41Z2022-12-28T15:31:41Z2022https://repositorio.ufms.br/handle/123456789/5496There is a significant demand for the automation of the location and recognition of objects and people, from the automation of agriculture to systems for automatic measurement of the water level in rivers, all performed by computer vision systems. These markings or labels are currently assigned at the pixel level, a technique called semantic segmentation. However, in a single image there can be several classes, and often these classes are very similar, making it a complex challenge to be worked on. Recently, methods based on Convolutional Neural Networks (CNN) have achieved impressive success in semantic segmentation tasks. This success is due, among other factors, to the inclusion of some context to assist the network, such as the information that one class is more frequent than the other and/or; the information that the dataset has images with a high level of pixel-labeling uncertainty present at the edges. However, these two points mentioned, both class imbalance and pixel-labeling uncertainty, can be further explored. We present an approach that calculates and assigns a pixel-wise weight, considering its class and the uncertainty during the labeling process. Pixel-wise weights are used during training to increase or decrease the importance of the pixels. Some papers are presented demonstrating the use of semantic segmentation techniques with context inclusion, with significant results in comparison with the most relevant methods. In addition, we also present a method for the reconstruction of the area of the object of interest, allowing the reconstruction of the edges of this object. The techniques presented here can be used in a wide variety of segmentation methods, improving their robustness.Existe uma demanda significativa para a automação da localização e reconhecimento dos objetos e pessoas, desde a automação da agricultura até sistemas de mensuração automática do nível da água em rios, tudo realizado por sistemas de visão computacional. A atribuição dessas marcações ou rotulações é realizada atualmente em nível de pixel, técnica chamada de segmentação semântica. Porém, em uma única imagem podem existir várias classes, e frequentemente essas classes são muito parecidas, se tornando um desafio complexo a ser trabalhado. Recentemente, métodos baseados em Redes Neurais Convolucionais (CNN) alcançaram um sucesso impressionante em tarefas de segmentação semântica. Esse sucesso deve-se, entre outros fatores, à inclusão de algum contexto para auxiliar a rede, como por exemplo a informação que uma classe é mais frequente que a outra e/ou; a informação de que o dataset possui imagens com um alto nível de incerteza na rotulação dos pixels presentes nas bordas. Contudo, esses dois pontos mencionados, tanto o desequilíbrio das classes quanto à incerteza de rotulação de pixels, podem ser melhores explorados. Apresentamos uma abordagem que calcula e atribui um peso para o pixel, considerando sua classe e a incerteza durante o processo de rotulação. Os pesos dos pixels são usados durante o treinamento para aumentar ou diminuir a importância dos pixels. Alguns trabalhos são apresentados demonstrando a utilização de técnicas de segmentação semântica com inclusão de contexto, com resultados significativos em comparação com os métodos mais relevantes. Além disso, também apresentamos um método para a reconstrução da área do objeto de interesse, permitindo a reconstrução das bordas desse objeto. As técnicas aqui apresentadas podem ser utilizadas em uma ampla variedade de métodos de segmentação, melhorarando sua robustez.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilSegmentação de Imagens incluindo Contexto em Redes Neurais ConvolucionaisSegmentação de Imagens incluindo Contexto em Redes Neurais Convolucionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisWesley Nunes GoncalvesPatrik Ola Bressaninfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALTese_Patrik.pdfTese_Patrik.pdfapplication/pdf47805162https://repositorio.ufms.br/bitstream/123456789/5496/-1/Tese_Patrik.pdf0d9dc812659f33daa5ed61e7fa1231f6MD5-1123456789/54962022-12-28 11:31:42.911oai:repositorio.ufms.br:123456789/5496Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242022-12-28T15:31:42Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
dc.title.pt_BR.fl_str_mv |
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais |
title |
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais |
spellingShingle |
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais Patrik Ola Bressan Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais |
title_short |
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais |
title_full |
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais |
title_fullStr |
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais |
title_full_unstemmed |
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais |
title_sort |
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais |
author |
Patrik Ola Bressan |
author_facet |
Patrik Ola Bressan |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Wesley Nunes Goncalves |
dc.contributor.author.fl_str_mv |
Patrik Ola Bressan |
contributor_str_mv |
Wesley Nunes Goncalves |
dc.subject.por.fl_str_mv |
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais |
topic |
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais |
description |
There is a significant demand for the automation of the location and recognition of objects and people, from the automation of agriculture to systems for automatic measurement of the water level in rivers, all performed by computer vision systems. These markings or labels are currently assigned at the pixel level, a technique called semantic segmentation. However, in a single image there can be several classes, and often these classes are very similar, making it a complex challenge to be worked on. Recently, methods based on Convolutional Neural Networks (CNN) have achieved impressive success in semantic segmentation tasks. This success is due, among other factors, to the inclusion of some context to assist the network, such as the information that one class is more frequent than the other and/or; the information that the dataset has images with a high level of pixel-labeling uncertainty present at the edges. However, these two points mentioned, both class imbalance and pixel-labeling uncertainty, can be further explored. We present an approach that calculates and assigns a pixel-wise weight, considering its class and the uncertainty during the labeling process. Pixel-wise weights are used during training to increase or decrease the importance of the pixels. Some papers are presented demonstrating the use of semantic segmentation techniques with context inclusion, with significant results in comparison with the most relevant methods. In addition, we also present a method for the reconstruction of the area of the object of interest, allowing the reconstruction of the edges of this object. The techniques presented here can be used in a wide variety of segmentation methods, improving their robustness. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-12-28T15:31:41Z |
dc.date.available.fl_str_mv |
2022-12-28T15:31:41Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/5496 |
url |
https://repositorio.ufms.br/handle/123456789/5496 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.publisher.initials.fl_str_mv |
UFMS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Fundação Universidade Federal de Mato Grosso do Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
instacron_str |
UFMS |
institution |
UFMS |
reponame_str |
Repositório Institucional da UFMS |
collection |
Repositório Institucional da UFMS |
bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/5496/-1/Tese_Patrik.pdf |
bitstream.checksum.fl_str_mv |
0d9dc812659f33daa5ed61e7fa1231f6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
repository.mail.fl_str_mv |
ri.prograd@ufms.br |
_version_ |
1807552915173277696 |