Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Patrik Ola Bressan
Orientador(a): Wesley Nunes Goncalves
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Fundação Universidade Federal de Mato Grosso do Sul
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufms.br/handle/123456789/5496
Resumo: There is a significant demand for the automation of the location and recognition of objects and people, from the automation of agriculture to systems for automatic measurement of the water level in rivers, all performed by computer vision systems. These markings or labels are currently assigned at the pixel level, a technique called semantic segmentation. However, in a single image there can be several classes, and often these classes are very similar, making it a complex challenge to be worked on. Recently, methods based on Convolutional Neural Networks (CNN) have achieved impressive success in semantic segmentation tasks. This success is due, among other factors, to the inclusion of some context to assist the network, such as the information that one class is more frequent than the other and/or; the information that the dataset has images with a high level of pixel-labeling uncertainty present at the edges. However, these two points mentioned, both class imbalance and pixel-labeling uncertainty, can be further explored. We present an approach that calculates and assigns a pixel-wise weight, considering its class and the uncertainty during the labeling process. Pixel-wise weights are used during training to increase or decrease the importance of the pixels. Some papers are presented demonstrating the use of semantic segmentation techniques with context inclusion, with significant results in comparison with the most relevant methods. In addition, we also present a method for the reconstruction of the area of the object of interest, allowing the reconstruction of the edges of this object. The techniques presented here can be used in a wide variety of segmentation methods, improving their robustness.
id UFMS_8a0fa7c4e647434d1264f3ae653893ca
oai_identifier_str oai:repositorio.ufms.br:123456789/5496
network_acronym_str UFMS
network_name_str Repositório Institucional da UFMS
repository_id_str
spelling 2022-12-28T15:31:41Z2022-12-28T15:31:41Z2022https://repositorio.ufms.br/handle/123456789/5496There is a significant demand for the automation of the location and recognition of objects and people, from the automation of agriculture to systems for automatic measurement of the water level in rivers, all performed by computer vision systems. These markings or labels are currently assigned at the pixel level, a technique called semantic segmentation. However, in a single image there can be several classes, and often these classes are very similar, making it a complex challenge to be worked on. Recently, methods based on Convolutional Neural Networks (CNN) have achieved impressive success in semantic segmentation tasks. This success is due, among other factors, to the inclusion of some context to assist the network, such as the information that one class is more frequent than the other and/or; the information that the dataset has images with a high level of pixel-labeling uncertainty present at the edges. However, these two points mentioned, both class imbalance and pixel-labeling uncertainty, can be further explored. We present an approach that calculates and assigns a pixel-wise weight, considering its class and the uncertainty during the labeling process. Pixel-wise weights are used during training to increase or decrease the importance of the pixels. Some papers are presented demonstrating the use of semantic segmentation techniques with context inclusion, with significant results in comparison with the most relevant methods. In addition, we also present a method for the reconstruction of the area of the object of interest, allowing the reconstruction of the edges of this object. The techniques presented here can be used in a wide variety of segmentation methods, improving their robustness.Existe uma demanda significativa para a automação da localização e reconhecimento dos objetos e pessoas, desde a automação da agricultura até sistemas de mensuração automática do nível da água em rios, tudo realizado por sistemas de visão computacional. A atribuição dessas marcações ou rotulações é realizada atualmente em nível de pixel, técnica chamada de segmentação semântica. Porém, em uma única imagem podem existir várias classes, e frequentemente essas classes são muito parecidas, se tornando um desafio complexo a ser trabalhado. Recentemente, métodos baseados em Redes Neurais Convolucionais (CNN) alcançaram um sucesso impressionante em tarefas de segmentação semântica. Esse sucesso deve-se, entre outros fatores, à inclusão de algum contexto para auxiliar a rede, como por exemplo a informação que uma classe é mais frequente que a outra e/ou; a informação de que o dataset possui imagens com um alto nível de incerteza na rotulação dos pixels presentes nas bordas. Contudo, esses dois pontos mencionados, tanto o desequilíbrio das classes quanto à incerteza de rotulação de pixels, podem ser melhores explorados. Apresentamos uma abordagem que calcula e atribui um peso para o pixel, considerando sua classe e a incerteza durante o processo de rotulação. Os pesos dos pixels são usados durante o treinamento para aumentar ou diminuir a importância dos pixels. Alguns trabalhos são apresentados demonstrando a utilização de técnicas de segmentação semântica com inclusão de contexto, com resultados significativos em comparação com os métodos mais relevantes. Além disso, também apresentamos um método para a reconstrução da área do objeto de interesse, permitindo a reconstrução das bordas desse objeto. As técnicas aqui apresentadas podem ser utilizadas em uma ampla variedade de métodos de segmentação, melhorarando sua robustez.Fundação Universidade Federal de Mato Grosso do SulUFMSBrasilSegmentação de Imagens incluindo Contexto em Redes Neurais ConvolucionaisSegmentação de Imagens incluindo Contexto em Redes Neurais Convolucionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisWesley Nunes GoncalvesPatrik Ola Bressaninfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALTese_Patrik.pdfTese_Patrik.pdfapplication/pdf47805162https://repositorio.ufms.br/bitstream/123456789/5496/-1/Tese_Patrik.pdf0d9dc812659f33daa5ed61e7fa1231f6MD5-1123456789/54962022-12-28 11:31:42.911oai:repositorio.ufms.br:123456789/5496Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242022-12-28T15:31:42Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false
dc.title.pt_BR.fl_str_mv Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
title Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
spellingShingle Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
Patrik Ola Bressan
Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
title_short Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
title_full Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
title_fullStr Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
title_full_unstemmed Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
title_sort Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
author Patrik Ola Bressan
author_facet Patrik Ola Bressan
author_role author
dc.contributor.advisor1.fl_str_mv Wesley Nunes Goncalves
dc.contributor.author.fl_str_mv Patrik Ola Bressan
contributor_str_mv Wesley Nunes Goncalves
dc.subject.por.fl_str_mv Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
topic Segmentação de Imagens incluindo Contexto em Redes Neurais Convolucionais
description There is a significant demand for the automation of the location and recognition of objects and people, from the automation of agriculture to systems for automatic measurement of the water level in rivers, all performed by computer vision systems. These markings or labels are currently assigned at the pixel level, a technique called semantic segmentation. However, in a single image there can be several classes, and often these classes are very similar, making it a complex challenge to be worked on. Recently, methods based on Convolutional Neural Networks (CNN) have achieved impressive success in semantic segmentation tasks. This success is due, among other factors, to the inclusion of some context to assist the network, such as the information that one class is more frequent than the other and/or; the information that the dataset has images with a high level of pixel-labeling uncertainty present at the edges. However, these two points mentioned, both class imbalance and pixel-labeling uncertainty, can be further explored. We present an approach that calculates and assigns a pixel-wise weight, considering its class and the uncertainty during the labeling process. Pixel-wise weights are used during training to increase or decrease the importance of the pixels. Some papers are presented demonstrating the use of semantic segmentation techniques with context inclusion, with significant results in comparison with the most relevant methods. In addition, we also present a method for the reconstruction of the area of the object of interest, allowing the reconstruction of the edges of this object. The techniques presented here can be used in a wide variety of segmentation methods, improving their robustness.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-12-28T15:31:41Z
dc.date.available.fl_str_mv 2022-12-28T15:31:41Z
dc.date.issued.fl_str_mv 2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufms.br/handle/123456789/5496
url https://repositorio.ufms.br/handle/123456789/5496
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.publisher.initials.fl_str_mv UFMS
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Fundação Universidade Federal de Mato Grosso do Sul
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMS
instname:Universidade Federal de Mato Grosso do Sul (UFMS)
instacron:UFMS
instname_str Universidade Federal de Mato Grosso do Sul (UFMS)
instacron_str UFMS
institution UFMS
reponame_str Repositório Institucional da UFMS
collection Repositório Institucional da UFMS
bitstream.url.fl_str_mv https://repositorio.ufms.br/bitstream/123456789/5496/-1/Tese_Patrik.pdf
bitstream.checksum.fl_str_mv 0d9dc812659f33daa5ed61e7fa1231f6
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)
repository.mail.fl_str_mv ri.prograd@ufms.br
_version_ 1807552915173277696