Estimativa e previsão da propagação da seca nos biomas brasileiros

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Valle Júnior, Luiz Claudio Galvão do
Orientador(a): Rodrigues, Thiago Rangel
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Mato Grosso do Sul
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufms.br/handle/123456789/11560
Resumo: Due to the risks that drought brings to water, food, and energy security from a specific population, extreme drought can cause not only huge economic losses but also endanger human and animal lives. For countries like Brazil, where hydroelectricity is the primary energy source and agriculture is the leading contributor to the Brazilian economy, intense droughts can cause harm in several ways. Therefore, to mitigate further damage to life quality and economy, understanding drought events behavior and being able to predict future periods of aridity with accuracy can be valuable strategies. A manner of counting drought events and their intensity is the use of standardized indexes, which utilize statistical analysis of a time series to produce indicators of wet and dry periods. The challenge is in collecting high-quality meteorological and, especially in Brazil, hydrological data, making it difficult to obtain estimates regarding drought to generate diagnoses and forecasts. Considering the difficulties of collecting hydrological data, the goal of this work was to analyze drought conditions across Brazilian biomes through hydrometeorological data from a time series that spans from 1980 to 2010, utilizing information from 735 catchments distributed throughout the country. To characterize such drought conditions, it was used standardized indexes regarding meteorological (SPI and SPEI) and hydrological events (SSI), considering precipitation (P), reference evapotranspiration (ETo), and discharge (Q), respectively, in different time scales, varying between 1, 3, 6, 12, and 24 months. Drought events were counted throughout the time series, and trend analysis was conducted on the hydrometeorological variables and the drought indexes. Additionally, models using machine learning (ML) were tested to aid in predicting hydrological drought indexes based on precipitation and reference evapotranspiration, considering a lag between the meteorological indexes and the hydrological one, which was evaluated through cross-correlation analysis. The ML methods employed were support vector machine (SVM), gene expression programming (GEP), and artificial neural networks (ANN). The trend analysis of the micrometeorological data, discharge, and drought indexes variables indicated variations that led to an increase in both hydrological and meteorological drought events during the time series across much of the country, especially in Pantanal, Cerrado, and Amazon rainforest. Considering the total number of drought events, it is noticed that a higher number of events were detected with SPI and SPEI than with SSI, notably in Pampa and Caatinga. It was possible to observe that in Pantanal there is a well-defined lag between meteorological and hydrological drought; however, in the Amazon rainforest and Cerrado, the obtained results indicate that factors beyond P and ETo influence SSI estimates. Among the ML models tested, SVM and GEP provided the best estimates, producing smaller errors than the results generated by ANN. Generally, the events in longer time scales, such as 12 and 24 months, showed estimates with smaller errors, although, in Pantanal, ML models produced satisfactory results in all time scales as long as an ideal lag is considered between the variables. These tools can provide a better understanding of drought behavior in Brazil and the possibilities of promoting severe and extreme hydrological drought events forecast, particularly in areas lacking measurements or consistent time series of discharge.
id UFMS_eea94e9f1e850c2afd602e2b4bd5e2f7
oai_identifier_str oai:repositorio.ufms.br:123456789/11560
network_acronym_str UFMS
network_name_str Repositório Institucional da UFMS
repository_id_str
spelling 2025-03-12T11:55:27Z2025-03-12T11:55:27Z2025https://repositorio.ufms.br/handle/123456789/11560Due to the risks that drought brings to water, food, and energy security from a specific population, extreme drought can cause not only huge economic losses but also endanger human and animal lives. For countries like Brazil, where hydroelectricity is the primary energy source and agriculture is the leading contributor to the Brazilian economy, intense droughts can cause harm in several ways. Therefore, to mitigate further damage to life quality and economy, understanding drought events behavior and being able to predict future periods of aridity with accuracy can be valuable strategies. A manner of counting drought events and their intensity is the use of standardized indexes, which utilize statistical analysis of a time series to produce indicators of wet and dry periods. The challenge is in collecting high-quality meteorological and, especially in Brazil, hydrological data, making it difficult to obtain estimates regarding drought to generate diagnoses and forecasts. Considering the difficulties of collecting hydrological data, the goal of this work was to analyze drought conditions across Brazilian biomes through hydrometeorological data from a time series that spans from 1980 to 2010, utilizing information from 735 catchments distributed throughout the country. To characterize such drought conditions, it was used standardized indexes regarding meteorological (SPI and SPEI) and hydrological events (SSI), considering precipitation (P), reference evapotranspiration (ETo), and discharge (Q), respectively, in different time scales, varying between 1, 3, 6, 12, and 24 months. Drought events were counted throughout the time series, and trend analysis was conducted on the hydrometeorological variables and the drought indexes. Additionally, models using machine learning (ML) were tested to aid in predicting hydrological drought indexes based on precipitation and reference evapotranspiration, considering a lag between the meteorological indexes and the hydrological one, which was evaluated through cross-correlation analysis. The ML methods employed were support vector machine (SVM), gene expression programming (GEP), and artificial neural networks (ANN). The trend analysis of the micrometeorological data, discharge, and drought indexes variables indicated variations that led to an increase in both hydrological and meteorological drought events during the time series across much of the country, especially in Pantanal, Cerrado, and Amazon rainforest. Considering the total number of drought events, it is noticed that a higher number of events were detected with SPI and SPEI than with SSI, notably in Pampa and Caatinga. It was possible to observe that in Pantanal there is a well-defined lag between meteorological and hydrological drought; however, in the Amazon rainforest and Cerrado, the obtained results indicate that factors beyond P and ETo influence SSI estimates. Among the ML models tested, SVM and GEP provided the best estimates, producing smaller errors than the results generated by ANN. Generally, the events in longer time scales, such as 12 and 24 months, showed estimates with smaller errors, although, in Pantanal, ML models produced satisfactory results in all time scales as long as an ideal lag is considered between the variables. These tools can provide a better understanding of drought behavior in Brazil and the possibilities of promoting severe and extreme hydrological drought events forecast, particularly in areas lacking measurements or consistent time series of discharge.Por conta dos riscos que as secas trazem à segurança hídrica, alimentar e energética de uma determinada população, eventos extremos podem causar não só grandes prejuízos econômicos, mas também perda de vidas humanas e animais. Para países como o Brasil, onde a energia hidráulica é a principal matriz energética e o setor agrícola é a principal fonte de economia do país, secas mais severas podem causar infortúnios em diversas escalas, portanto, como forma de evitar grandes danos à qualidade de vida e a economia, entender o comportamento dos eventos de seca e conseguir prever futuros períodos de estiagem com acurácia se tornam estratégias valiosas. Uma das formas de contabilizar eventos de seca e suas respectivas intensidades é o uso de índices padronizados, que se utilizam de análise estatística de uma série temporal para gerar indicadores de períodos úmidos ou secos. O desafio está na obtenção de séries de dados de qualidade de variáveis meteorológicas e, principalmente no Brasil, hidrológicas, dificultando as estimativas de secas para gerar diagnósticos e prognósticos. Por conta da dificuldade da coleta de dados hidrológicos, o objetivo deste trabalho foi analisar as condições de seca nos biomas brasileiros através de dados hidrometeorológicos provenientes de uma série temporal entre 1980 e 2010 de dados medidos de 735 bacias distribuídas em todos os seis biomas brasileiros. Para caracterizar tais condições de seca, foram utilizados índices padronizados de seca meteorológica (SPI e SPEI) e hidrológica (SSI) considerando precipitação (P), evapotranspiração de referência (ETo) e vazão (Q), respectivamente, em diferentes escalas de tempo, variando entre 1, 3, 6, 12 e 24 meses. Os eventos de seca ao decorrer da série foram contabilizados, assim como foi realizada a análise de tendência das variáveis hidrometeorológicas e dos índices de seca. Além disso, foram testados modelos utilizando machine learning (ML) para facilitar a previsão de índices de seca hidrológica através de precipitação e evapotranspiração de referência, considerando um atraso entre os índices meteorológicos e o índice hidrológico avaliado através de correlação cruzada. Os métodos de ML utilizados foram support vector machine (SVM), gene expression. programming (GEP) e artificial neural networks (ANN). A análise de tendência das variáveis micrometeorológicas, de vazão e dos índices de seca indicou variações que levam ao aumento dos eventos de estiagem hidrológica e meteorológica em quantidade e intensidade ao decorrer da série histórica em grande parte do país, especialmente no Pantanal, Cerrado e Amazônia. No total de eventos de seca, nota-se um número maior de eventos detectados com SPI e SPEI do que os observados com SSI, notavelmente no Pampa e na Caatinga. Foi possível observar que no Pantanal há um atraso bem definido entre a seca meteorológica e hidrológica, porém na Amazônia e Cerrado os resultados indicam que há outros fatores além de P e ETo que influenciam nas estimativas de SSI. Dentre os modelos de ML utilizados, SVM e GEP apresentaram estimativas com menores erros do que os resultados gerados por ANN. De forma geral, os eventos de maior escala de tempo, como 12 e 24 meses, apresentaram estimativas com menores erros, todavia, no Pantanal, em todas as escalas de tempo os modelos de ML produziram resultados satisfatórios, desde que considerado o atraso ideal entre as variáveis. Tais ferramentas possibilitam o melhor entendimento do comportamento da seca no Brasil e possibilidades de facilitar a previsão de eventos de seca hidrológica severa ou extrema, especialmente em locais que não possuem medições ou séries históricas consistentes de vazão dos corpos hídricos.Universidade Federal de Mato Grosso do SulUFMSBrasilPropagação de SecaPrevisão de SecaEventos ExtremosEstimativa e previsão da propagação da seca nos biomas brasileirosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisRodrigues, Thiago RangelValle Júnior, Luiz Claudio Galvão doinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSORIGINALTese _Luiz Claudio G do Valle Junior - V1.pdfTese _Luiz Claudio G do Valle Junior - V1.pdfapplication/pdf5975018https://repositorio.ufms.br/bitstream/123456789/11560/1/Tese%20_Luiz%20Claudio%20G%20do%20Valle%20Junior%20-%20V1.pdf52c0bae48a67d830545ce167e8f2b4e7MD51123456789/115602025-08-01 15:08:04.089oai:repositorio.ufms.br:123456789/11560Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242025-08-01T19:08:04Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false
dc.title.pt_BR.fl_str_mv Estimativa e previsão da propagação da seca nos biomas brasileiros
title Estimativa e previsão da propagação da seca nos biomas brasileiros
spellingShingle Estimativa e previsão da propagação da seca nos biomas brasileiros
Valle Júnior, Luiz Claudio Galvão do
Propagação de Seca
Previsão de Seca
Eventos Extremos
title_short Estimativa e previsão da propagação da seca nos biomas brasileiros
title_full Estimativa e previsão da propagação da seca nos biomas brasileiros
title_fullStr Estimativa e previsão da propagação da seca nos biomas brasileiros
title_full_unstemmed Estimativa e previsão da propagação da seca nos biomas brasileiros
title_sort Estimativa e previsão da propagação da seca nos biomas brasileiros
author Valle Júnior, Luiz Claudio Galvão do
author_facet Valle Júnior, Luiz Claudio Galvão do
author_role author
dc.contributor.advisor1.fl_str_mv Rodrigues, Thiago Rangel
dc.contributor.author.fl_str_mv Valle Júnior, Luiz Claudio Galvão do
contributor_str_mv Rodrigues, Thiago Rangel
dc.subject.por.fl_str_mv Propagação de Seca
Previsão de Seca
Eventos Extremos
topic Propagação de Seca
Previsão de Seca
Eventos Extremos
description Due to the risks that drought brings to water, food, and energy security from a specific population, extreme drought can cause not only huge economic losses but also endanger human and animal lives. For countries like Brazil, where hydroelectricity is the primary energy source and agriculture is the leading contributor to the Brazilian economy, intense droughts can cause harm in several ways. Therefore, to mitigate further damage to life quality and economy, understanding drought events behavior and being able to predict future periods of aridity with accuracy can be valuable strategies. A manner of counting drought events and their intensity is the use of standardized indexes, which utilize statistical analysis of a time series to produce indicators of wet and dry periods. The challenge is in collecting high-quality meteorological and, especially in Brazil, hydrological data, making it difficult to obtain estimates regarding drought to generate diagnoses and forecasts. Considering the difficulties of collecting hydrological data, the goal of this work was to analyze drought conditions across Brazilian biomes through hydrometeorological data from a time series that spans from 1980 to 2010, utilizing information from 735 catchments distributed throughout the country. To characterize such drought conditions, it was used standardized indexes regarding meteorological (SPI and SPEI) and hydrological events (SSI), considering precipitation (P), reference evapotranspiration (ETo), and discharge (Q), respectively, in different time scales, varying between 1, 3, 6, 12, and 24 months. Drought events were counted throughout the time series, and trend analysis was conducted on the hydrometeorological variables and the drought indexes. Additionally, models using machine learning (ML) were tested to aid in predicting hydrological drought indexes based on precipitation and reference evapotranspiration, considering a lag between the meteorological indexes and the hydrological one, which was evaluated through cross-correlation analysis. The ML methods employed were support vector machine (SVM), gene expression programming (GEP), and artificial neural networks (ANN). The trend analysis of the micrometeorological data, discharge, and drought indexes variables indicated variations that led to an increase in both hydrological and meteorological drought events during the time series across much of the country, especially in Pantanal, Cerrado, and Amazon rainforest. Considering the total number of drought events, it is noticed that a higher number of events were detected with SPI and SPEI than with SSI, notably in Pampa and Caatinga. It was possible to observe that in Pantanal there is a well-defined lag between meteorological and hydrological drought; however, in the Amazon rainforest and Cerrado, the obtained results indicate that factors beyond P and ETo influence SSI estimates. Among the ML models tested, SVM and GEP provided the best estimates, producing smaller errors than the results generated by ANN. Generally, the events in longer time scales, such as 12 and 24 months, showed estimates with smaller errors, although, in Pantanal, ML models produced satisfactory results in all time scales as long as an ideal lag is considered between the variables. These tools can provide a better understanding of drought behavior in Brazil and the possibilities of promoting severe and extreme hydrological drought events forecast, particularly in areas lacking measurements or consistent time series of discharge.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-03-12T11:55:27Z
dc.date.available.fl_str_mv 2025-03-12T11:55:27Z
dc.date.issued.fl_str_mv 2025
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufms.br/handle/123456789/11560
url https://repositorio.ufms.br/handle/123456789/11560
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Mato Grosso do Sul
dc.publisher.initials.fl_str_mv UFMS
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Mato Grosso do Sul
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMS
instname:Universidade Federal de Mato Grosso do Sul (UFMS)
instacron:UFMS
instname_str Universidade Federal de Mato Grosso do Sul (UFMS)
instacron_str UFMS
institution UFMS
reponame_str Repositório Institucional da UFMS
collection Repositório Institucional da UFMS
bitstream.url.fl_str_mv https://repositorio.ufms.br/bitstream/123456789/11560/1/Tese%20_Luiz%20Claudio%20G%20do%20Valle%20Junior%20-%20V1.pdf
bitstream.checksum.fl_str_mv 52c0bae48a67d830545ce167e8f2b4e7
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)
repository.mail.fl_str_mv ri.prograd@ufms.br
_version_ 1845881952842809344