Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Pará
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
| Departamento: |
Instituto de Tecnologia
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufpa.br/jspui/handle/2011/17230 |
Resumo: | A inspeção de componentes de trem que podem causar descarrilamento possui um papel importante na manutenção ferroviária. A fim de aumentar a produtividade e a segurança, empresas prestadoras de serviços procuram por soluções de inspeção automáticas e confiáveis. Apesar da inspeção automática baseada em visão computacional ser um conceito consolidado, tais aplicações desafiam a comunidade de desenvolvimento em razão de fatores ambientais e logísticos a serem considerados. Este trabalho propõe uma técnica de detecção e estimativa das posições das regiões de dreno presentes em vagões de trem. Nosso detector/rastreador consiste em uma rede neural convolucional e um conjunto de restrições geométricas, que levam em conta a trajetória ideal dos componentes de interesse dos vagões e as distâncias entre eles. Detalhamos os procedimentos de treinamento e validação, juntamente com as métricas utilizadas para aferir a performance do sistema proposto. Os resultados apresentados são comparados com outras duas técnicas, e exibem um bom custo‑benefício entre confiança e complexidade computacional para a detecção dos componentes de interesse. |
| id |
UFPA_0178b6d27680200317bdd24dac180d83 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpa.br:2011/17230 |
| network_acronym_str |
UFPA |
| network_name_str |
Repositório Institucional da UFPA |
| repository_id_str |
|
| spelling |
2025-04-14T18:43:23Z2025-04-14T18:43:23Z2020-04-27GONÇALVES, Camilo Lélis Assis. Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restrições geométricas. Orientador: Fabrício José Brito Barros. 2020. 68 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17230. Acesso em:.https://repositorio.ufpa.br/jspui/handle/2011/17230A inspeção de componentes de trem que podem causar descarrilamento possui um papel importante na manutenção ferroviária. A fim de aumentar a produtividade e a segurança, empresas prestadoras de serviços procuram por soluções de inspeção automáticas e confiáveis. Apesar da inspeção automática baseada em visão computacional ser um conceito consolidado, tais aplicações desafiam a comunidade de desenvolvimento em razão de fatores ambientais e logísticos a serem considerados. Este trabalho propõe uma técnica de detecção e estimativa das posições das regiões de dreno presentes em vagões de trem. Nosso detector/rastreador consiste em uma rede neural convolucional e um conjunto de restrições geométricas, que levam em conta a trajetória ideal dos componentes de interesse dos vagões e as distâncias entre eles. Detalhamos os procedimentos de treinamento e validação, juntamente com as métricas utilizadas para aferir a performance do sistema proposto. Os resultados apresentados são comparados com outras duas técnicas, e exibem um bom custo‑benefício entre confiança e complexidade computacional para a detecção dos componentes de interesse.A inspeção de componentes de trem que podem causar descarrilamento possui um papel importante na manutenção ferroviária. A fim de aumentar a produtividade e a segurança, empresas prestadoras de serviços procuram por soluções de inspeção automáticas e confiáveis. Apesar da inspeção automática baseada em visão computacional ser um conceito consolidado, tais aplicações desafiam a comunidade de desenvolvimento em razão de fatores ambientais e logísticos a serem considerados. Este trabalho propõe uma técnica de detecção e estimativa das posições das regiões de dreno presentes em vagões de trem. Nosso detector/rastreador consiste em uma rede neural convolucional e um conjunto de restrições geométricas, que levam em conta a trajetória ideal dos componentes de interesse dos vagões e as distâncias entre eles. Detalhamos os procedimentos de treinamento e validação, juntamente com as métricas utilizadas para aferir a performance do sistema proposto. Os resultados apresentados são comparados com outras duas técnicas, e exibem um bom custo‑benefício entre confiança e complexidade computacional para a detecção dos componentes de interesse.Submitted by Luciclea Silva (luci@ufpa.br) on 2025-04-14T18:43:05Z No. of bitstreams: 2 Dis_DeteccaoRastreamentoComponentes.pdf: 18749578 bytes, checksum: c828a789998455970df81cfd65e6de80 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)Approved for entry into archive by Luciclea Silva (luci@ufpa.br) on 2025-04-14T18:43:23Z (GMT) No. of bitstreams: 2 Dis_DeteccaoRastreamentoComponentes.pdf: 18749578 bytes, checksum: c828a789998455970df81cfd65e6de80 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)Made available in DSpace on 2025-04-14T18:43:23Z (GMT). No. of bitstreams: 2 Dis_DeteccaoRastreamentoComponentes.pdf: 18749578 bytes, checksum: c828a789998455970df81cfd65e6de80 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Previous issue date: 2020-04-27porUniversidade Federal do ParáPrograma de Pós-Graduação em Engenharia ElétricaUFPABrasilInstituto de TecnologiaAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDisponível na internet via correio eletrônico: bibliotecaitec@ufpa.brreponame:Repositório Institucional da UFPAinstname:Universidade Federal do Pará (UFPA)instacron:UFPACNPQ::ENGENHARIAS::ENGENHARIA ELETRICAINTELIGÊNCIA COMPUTACIONALCOMPUTAÇÃO APLICADAVisão computacionalDetecção e rastreamento de objetosAprendizagem profundaAprendizado de máquinaComputer vision,Object trackingDeep learningMachine learningDetecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisBARROS, Fabrício José Britohttp://lattes.cnpq.br/9758585938727609http://lattes.cnpq.br/2807240909121645GONÇALVES, Camilo Lélis AssisORIGINALDis_DeteccaoRastreamentoComponentes.pdfDis_DeteccaoRastreamentoComponentes.pdfapplication/pdf18749578https://repositorio.ufpa.br/oai/bitstream/2011/17230/1/Dis_DeteccaoRastreamentoComponentes.pdfc828a789998455970df81cfd65e6de80MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpa.br/oai/bitstream/2011/17230/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81890https://repositorio.ufpa.br/oai/bitstream/2011/17230/3/license.txt2b55adef5313c442051bad36d3312b2bMD532011/172302025-04-14 15:44:59.972oai:repositorio.ufpa.br:2011/17230TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUGFyw6EgKFJJVUZQQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEgc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gUklVRlBBIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJJVUZQQSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIAoKVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgcHVibGljYcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIGFvIFJJVUZQQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gCm91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIFJJVUZQQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpa.br/oai/requestriufpabc@ufpa.bropendoar:21232025-04-14T18:44:59Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)false |
| dc.title.pt_BR.fl_str_mv |
Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas |
| title |
Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas |
| spellingShingle |
Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas GONÇALVES, Camilo Lélis Assis CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Visão computacional Detecção e rastreamento de objetos Aprendizagem profunda Aprendizado de máquina Computer vision, Object tracking Deep learning Machine learning INTELIGÊNCIA COMPUTACIONAL COMPUTAÇÃO APLICADA |
| title_short |
Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas |
| title_full |
Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas |
| title_fullStr |
Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas |
| title_full_unstemmed |
Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas |
| title_sort |
Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas |
| author |
GONÇALVES, Camilo Lélis Assis |
| author_facet |
GONÇALVES, Camilo Lélis Assis |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
BARROS, Fabrício José Brito |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9758585938727609 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2807240909121645 |
| dc.contributor.author.fl_str_mv |
GONÇALVES, Camilo Lélis Assis |
| contributor_str_mv |
BARROS, Fabrício José Brito |
| dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| topic |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Visão computacional Detecção e rastreamento de objetos Aprendizagem profunda Aprendizado de máquina Computer vision, Object tracking Deep learning Machine learning INTELIGÊNCIA COMPUTACIONAL COMPUTAÇÃO APLICADA |
| dc.subject.por.fl_str_mv |
Visão computacional Detecção e rastreamento de objetos Aprendizagem profunda Aprendizado de máquina |
| dc.subject.eng.fl_str_mv |
Computer vision, Object tracking Deep learning Machine learning |
| dc.subject.linhadepesquisa.pt_BR.fl_str_mv |
INTELIGÊNCIA COMPUTACIONAL |
| dc.subject.areadeconcentracao.pt_BR.fl_str_mv |
COMPUTAÇÃO APLICADA |
| description |
A inspeção de componentes de trem que podem causar descarrilamento possui um papel importante na manutenção ferroviária. A fim de aumentar a produtividade e a segurança, empresas prestadoras de serviços procuram por soluções de inspeção automáticas e confiáveis. Apesar da inspeção automática baseada em visão computacional ser um conceito consolidado, tais aplicações desafiam a comunidade de desenvolvimento em razão de fatores ambientais e logísticos a serem considerados. Este trabalho propõe uma técnica de detecção e estimativa das posições das regiões de dreno presentes em vagões de trem. Nosso detector/rastreador consiste em uma rede neural convolucional e um conjunto de restrições geométricas, que levam em conta a trajetória ideal dos componentes de interesse dos vagões e as distâncias entre eles. Detalhamos os procedimentos de treinamento e validação, juntamente com as métricas utilizadas para aferir a performance do sistema proposto. Os resultados apresentados são comparados com outras duas técnicas, e exibem um bom custo‑benefício entre confiança e complexidade computacional para a detecção dos componentes de interesse. |
| publishDate |
2020 |
| dc.date.issued.fl_str_mv |
2020-04-27 |
| dc.date.accessioned.fl_str_mv |
2025-04-14T18:43:23Z |
| dc.date.available.fl_str_mv |
2025-04-14T18:43:23Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
GONÇALVES, Camilo Lélis Assis. Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restrições geométricas. Orientador: Fabrício José Brito Barros. 2020. 68 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17230. Acesso em:. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufpa.br/jspui/handle/2011/17230 |
| identifier_str_mv |
GONÇALVES, Camilo Lélis Assis. Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restrições geométricas. Orientador: Fabrício José Brito Barros. 2020. 68 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17230. Acesso em:. |
| url |
https://repositorio.ufpa.br/jspui/handle/2011/17230 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Pará |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
| dc.publisher.initials.fl_str_mv |
UFPA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Tecnologia |
| publisher.none.fl_str_mv |
Universidade Federal do Pará |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPA instname:Universidade Federal do Pará (UFPA) instacron:UFPA |
| instname_str |
Universidade Federal do Pará (UFPA) |
| instacron_str |
UFPA |
| institution |
UFPA |
| reponame_str |
Repositório Institucional da UFPA |
| collection |
Repositório Institucional da UFPA |
| dc.source.uri.pt_BR.fl_str_mv |
Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br |
| bitstream.url.fl_str_mv |
https://repositorio.ufpa.br/oai/bitstream/2011/17230/1/Dis_DeteccaoRastreamentoComponentes.pdf https://repositorio.ufpa.br/oai/bitstream/2011/17230/2/license_rdf https://repositorio.ufpa.br/oai/bitstream/2011/17230/3/license.txt |
| bitstream.checksum.fl_str_mv |
c828a789998455970df81cfd65e6de80 e39d27027a6cc9cb039ad269a5db8e34 2b55adef5313c442051bad36d3312b2b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA) |
| repository.mail.fl_str_mv |
riufpabc@ufpa.br |
| _version_ |
1842907944574779392 |