Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: GONÇALVES, Camilo Lélis Assis lattes
Orientador(a): BARROS, Fabrício José Brito lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufpa.br/jspui/handle/2011/17230
Resumo: A inspeção de componentes de trem que podem causar descarrilamento possui um papel importante na manutenção ferroviária. A fim de aumentar a produtividade e a segurança, empresas prestadoras de serviços procuram por soluções de inspeção automáticas e confiáveis. Apesar da inspeção automática baseada em visão computacional ser um conceito consolidado, tais aplicações desafiam a comunidade de desenvolvimento em razão de fatores ambientais e logísticos a serem considerados. Este trabalho propõe uma técnica de detecção e estimativa das posições das regiões de dreno presentes em vagões de trem. Nosso detector/rastreador consiste em uma rede neural convolucional e um conjunto de restrições geométricas, que levam em conta a trajetória ideal dos componentes de interesse dos vagões e as distâncias entre eles. Detalhamos os procedimentos de treinamento e validação, juntamente com as métricas utilizadas para aferir a performance do sistema proposto. Os resultados apresentados são comparados com outras duas técnicas, e exibem um bom custo‑benefício entre confiança e complexidade computacional para a detecção dos componentes de interesse.
id UFPA_0178b6d27680200317bdd24dac180d83
oai_identifier_str oai:repositorio.ufpa.br:2011/17230
network_acronym_str UFPA
network_name_str Repositório Institucional da UFPA
repository_id_str
spelling 2025-04-14T18:43:23Z2025-04-14T18:43:23Z2020-04-27GONÇALVES, Camilo Lélis Assis. Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restrições geométricas. Orientador: Fabrício José Brito Barros. 2020. 68 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17230. Acesso em:.https://repositorio.ufpa.br/jspui/handle/2011/17230A inspeção de componentes de trem que podem causar descarrilamento possui um papel importante na manutenção ferroviária. A fim de aumentar a produtividade e a segurança, empresas prestadoras de serviços procuram por soluções de inspeção automáticas e confiáveis. Apesar da inspeção automática baseada em visão computacional ser um conceito consolidado, tais aplicações desafiam a comunidade de desenvolvimento em razão de fatores ambientais e logísticos a serem considerados. Este trabalho propõe uma técnica de detecção e estimativa das posições das regiões de dreno presentes em vagões de trem. Nosso detector/rastreador consiste em uma rede neural convolucional e um conjunto de restrições geométricas, que levam em conta a trajetória ideal dos componentes de interesse dos vagões e as distâncias entre eles. Detalhamos os procedimentos de treinamento e validação, juntamente com as métricas utilizadas para aferir a performance do sistema proposto. Os resultados apresentados são comparados com outras duas técnicas, e exibem um bom custo‑benefício entre confiança e complexidade computacional para a detecção dos componentes de interesse.A inspeção de componentes de trem que podem causar descarrilamento possui um papel importante na manutenção ferroviária. A fim de aumentar a produtividade e a segurança, empresas prestadoras de serviços procuram por soluções de inspeção automáticas e confiáveis. Apesar da inspeção automática baseada em visão computacional ser um conceito consolidado, tais aplicações desafiam a comunidade de desenvolvimento em razão de fatores ambientais e logísticos a serem considerados. Este trabalho propõe uma técnica de detecção e estimativa das posições das regiões de dreno presentes em vagões de trem. Nosso detector/rastreador consiste em uma rede neural convolucional e um conjunto de restrições geométricas, que levam em conta a trajetória ideal dos componentes de interesse dos vagões e as distâncias entre eles. Detalhamos os procedimentos de treinamento e validação, juntamente com as métricas utilizadas para aferir a performance do sistema proposto. Os resultados apresentados são comparados com outras duas técnicas, e exibem um bom custo‑benefício entre confiança e complexidade computacional para a detecção dos componentes de interesse.Submitted by Luciclea Silva (luci@ufpa.br) on 2025-04-14T18:43:05Z No. of bitstreams: 2 Dis_DeteccaoRastreamentoComponentes.pdf: 18749578 bytes, checksum: c828a789998455970df81cfd65e6de80 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)Approved for entry into archive by Luciclea Silva (luci@ufpa.br) on 2025-04-14T18:43:23Z (GMT) No. of bitstreams: 2 Dis_DeteccaoRastreamentoComponentes.pdf: 18749578 bytes, checksum: c828a789998455970df81cfd65e6de80 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)Made available in DSpace on 2025-04-14T18:43:23Z (GMT). No. of bitstreams: 2 Dis_DeteccaoRastreamentoComponentes.pdf: 18749578 bytes, checksum: c828a789998455970df81cfd65e6de80 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Previous issue date: 2020-04-27porUniversidade Federal do ParáPrograma de Pós-Graduação em Engenharia ElétricaUFPABrasilInstituto de TecnologiaAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDisponível na internet via correio eletrônico: bibliotecaitec@ufpa.brreponame:Repositório Institucional da UFPAinstname:Universidade Federal do Pará (UFPA)instacron:UFPACNPQ::ENGENHARIAS::ENGENHARIA ELETRICAINTELIGÊNCIA COMPUTACIONALCOMPUTAÇÃO APLICADAVisão computacionalDetecção e rastreamento de objetosAprendizagem profundaAprendizado de máquinaComputer vision,Object trackingDeep learningMachine learningDetecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisBARROS, Fabrício José Britohttp://lattes.cnpq.br/9758585938727609http://lattes.cnpq.br/2807240909121645GONÇALVES, Camilo Lélis AssisORIGINALDis_DeteccaoRastreamentoComponentes.pdfDis_DeteccaoRastreamentoComponentes.pdfapplication/pdf18749578https://repositorio.ufpa.br/oai/bitstream/2011/17230/1/Dis_DeteccaoRastreamentoComponentes.pdfc828a789998455970df81cfd65e6de80MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpa.br/oai/bitstream/2011/17230/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81890https://repositorio.ufpa.br/oai/bitstream/2011/17230/3/license.txt2b55adef5313c442051bad36d3312b2bMD532011/172302025-04-14 15:44:59.972oai:repositorio.ufpa.br:2011/17230TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUGFyw6EgKFJJVUZQQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEgc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gUklVRlBBIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJJVUZQQSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIAoKVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgcHVibGljYcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIGFvIFJJVUZQQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gCm91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIFJJVUZQQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpa.br/oai/requestriufpabc@ufpa.bropendoar:21232025-04-14T18:44:59Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)false
dc.title.pt_BR.fl_str_mv Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas
title Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas
spellingShingle Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas
GONÇALVES, Camilo Lélis Assis
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Visão computacional
Detecção e rastreamento de objetos
Aprendizagem profunda
Aprendizado de máquina
Computer vision,
Object tracking
Deep learning
Machine learning
INTELIGÊNCIA COMPUTACIONAL
COMPUTAÇÃO APLICADA
title_short Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas
title_full Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas
title_fullStr Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas
title_full_unstemmed Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas
title_sort Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restricões geométricas
author GONÇALVES, Camilo Lélis Assis
author_facet GONÇALVES, Camilo Lélis Assis
author_role author
dc.contributor.advisor1.fl_str_mv BARROS, Fabrício José Brito
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9758585938727609
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2807240909121645
dc.contributor.author.fl_str_mv GONÇALVES, Camilo Lélis Assis
contributor_str_mv BARROS, Fabrício José Brito
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Visão computacional
Detecção e rastreamento de objetos
Aprendizagem profunda
Aprendizado de máquina
Computer vision,
Object tracking
Deep learning
Machine learning
INTELIGÊNCIA COMPUTACIONAL
COMPUTAÇÃO APLICADA
dc.subject.por.fl_str_mv Visão computacional
Detecção e rastreamento de objetos
Aprendizagem profunda
Aprendizado de máquina
dc.subject.eng.fl_str_mv Computer vision,
Object tracking
Deep learning
Machine learning
dc.subject.linhadepesquisa.pt_BR.fl_str_mv INTELIGÊNCIA COMPUTACIONAL
dc.subject.areadeconcentracao.pt_BR.fl_str_mv COMPUTAÇÃO APLICADA
description A inspeção de componentes de trem que podem causar descarrilamento possui um papel importante na manutenção ferroviária. A fim de aumentar a produtividade e a segurança, empresas prestadoras de serviços procuram por soluções de inspeção automáticas e confiáveis. Apesar da inspeção automática baseada em visão computacional ser um conceito consolidado, tais aplicações desafiam a comunidade de desenvolvimento em razão de fatores ambientais e logísticos a serem considerados. Este trabalho propõe uma técnica de detecção e estimativa das posições das regiões de dreno presentes em vagões de trem. Nosso detector/rastreador consiste em uma rede neural convolucional e um conjunto de restrições geométricas, que levam em conta a trajetória ideal dos componentes de interesse dos vagões e as distâncias entre eles. Detalhamos os procedimentos de treinamento e validação, juntamente com as métricas utilizadas para aferir a performance do sistema proposto. Os resultados apresentados são comparados com outras duas técnicas, e exibem um bom custo‑benefício entre confiança e complexidade computacional para a detecção dos componentes de interesse.
publishDate 2020
dc.date.issued.fl_str_mv 2020-04-27
dc.date.accessioned.fl_str_mv 2025-04-14T18:43:23Z
dc.date.available.fl_str_mv 2025-04-14T18:43:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GONÇALVES, Camilo Lélis Assis. Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restrições geométricas. Orientador: Fabrício José Brito Barros. 2020. 68 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17230. Acesso em:.
dc.identifier.uri.fl_str_mv https://repositorio.ufpa.br/jspui/handle/2011/17230
identifier_str_mv GONÇALVES, Camilo Lélis Assis. Detecção e rastreamento de componentes de vagões ferroviários utilizando redes neurais convolucionais e restrições geométricas. Orientador: Fabrício José Brito Barros. 2020. 68 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2020. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/17230. Acesso em:.
url https://repositorio.ufpa.br/jspui/handle/2011/17230
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Pará
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFPA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal do Pará
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPA
instname:Universidade Federal do Pará (UFPA)
instacron:UFPA
instname_str Universidade Federal do Pará (UFPA)
instacron_str UFPA
institution UFPA
reponame_str Repositório Institucional da UFPA
collection Repositório Institucional da UFPA
dc.source.uri.pt_BR.fl_str_mv Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br
bitstream.url.fl_str_mv https://repositorio.ufpa.br/oai/bitstream/2011/17230/1/Dis_DeteccaoRastreamentoComponentes.pdf
https://repositorio.ufpa.br/oai/bitstream/2011/17230/2/license_rdf
https://repositorio.ufpa.br/oai/bitstream/2011/17230/3/license.txt
bitstream.checksum.fl_str_mv c828a789998455970df81cfd65e6de80
e39d27027a6cc9cb039ad269a5db8e34
2b55adef5313c442051bad36d3312b2b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)
repository.mail.fl_str_mv riufpabc@ufpa.br
_version_ 1842907944574779392