Classification and characterization methods of non-tchnical losses on smart grid scenarios
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Pará
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
| Departamento: |
Instituto de Tecnologia
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufpa.br/jspui/handle/2011/16616 |
Resumo: | Nowadays, grid resilience as a feature has become non-negotiable, significantly when power interruptions can impact the economy and society. Smart Grids (SGs) widespread popularity enables an immense amount of fine-grained e lectricity consumption data to be collected. However, risks can still exist in the Smart Grid (SG), since SG systems exchange valuable data, the distribution system loses substantial electrical energy. We divide this loss into two categories: technical and non-technical loss. A substantial amount of electrical energy is lost throughout the distribution system, and these losses are divided into two types: technical and non-technical. Non-technical losses (NTL) are any electrical energy consumed that is not invoiced. They may occur due to illegal connections, fraudulent activities, issues with energy meters such as delay in the installation or reading errors, contaminated, defective, or non-adapted measuring equipment, very low valid consumption estimates, faulty connections, and disregarded customers. Non-technical losses are the primary cause of revenue loss in the SG. Annually, electrical utilities incur billions in losses due to non-technical reasons. This thesis presents two detection methods of NTL: classification a nd c haracterization. We c reate a n ensemble predictor-based time series classifier t o c lassify N TL d etection. T his p redictor u ses the user’s energy consumption as a data input for classification, f rom s plitting t he d ata to executing the classifier. A lso, i t a ssumes t he t emporal a spects o f e nergy consumption data during the pre-processing, training, testing, and validation stages. The classification method has the advantage of classifying heterogeneous features in data. The characterization method proposes a study based on Information Theory Quantifiers (ITQ) to mitigate this challenge. First, we use a sliding window to convert the user’s energy consumption time series into a Bandt-Pompe (BP) probability distribution function. Then, we extract the used ITQ. Finally, we apply each metric to the Probability Density Function (PDF) and map the layers to characterize their behavior. The characterization method is advantageous to be used when we have big data. Overall, our best results have been recorded in the fraud detection-based time series classifiers (TSC) model, improving the empirical performance metrics by 10% or more over the other developed models. Our results show that users with normal and abnormal energy consumption can be distinguished using only Information Theory Quantifiers by considering the range of values for each metric. |
| id |
UFPA_596d17d897d00bdd283557005762cde3 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpa.br:2011/16616 |
| network_acronym_str |
UFPA |
| network_name_str |
Repositório Institucional da UFPA |
| repository_id_str |
|
| spelling |
2024-11-08T15:25:50Z2024-11-08T15:25:50Z2024-03-28BASTOS, Lucas de Lima. Classification and characterization methods of non-tchnical losses on smart grid scenarios. Orientador: Eduardo Coelho Cerqueira. 2024. 75 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16616. Acesso em:.https://repositorio.ufpa.br/jspui/handle/2011/16616Nowadays, grid resilience as a feature has become non-negotiable, significantly when power interruptions can impact the economy and society. Smart Grids (SGs) widespread popularity enables an immense amount of fine-grained e lectricity consumption data to be collected. However, risks can still exist in the Smart Grid (SG), since SG systems exchange valuable data, the distribution system loses substantial electrical energy. We divide this loss into two categories: technical and non-technical loss. A substantial amount of electrical energy is lost throughout the distribution system, and these losses are divided into two types: technical and non-technical. Non-technical losses (NTL) are any electrical energy consumed that is not invoiced. They may occur due to illegal connections, fraudulent activities, issues with energy meters such as delay in the installation or reading errors, contaminated, defective, or non-adapted measuring equipment, very low valid consumption estimates, faulty connections, and disregarded customers. Non-technical losses are the primary cause of revenue loss in the SG. Annually, electrical utilities incur billions in losses due to non-technical reasons. This thesis presents two detection methods of NTL: classification a nd c haracterization. We c reate a n ensemble predictor-based time series classifier t o c lassify N TL d etection. T his p redictor u ses the user’s energy consumption as a data input for classification, f rom s plitting t he d ata to executing the classifier. A lso, i t a ssumes t he t emporal a spects o f e nergy consumption data during the pre-processing, training, testing, and validation stages. The classification method has the advantage of classifying heterogeneous features in data. The characterization method proposes a study based on Information Theory Quantifiers (ITQ) to mitigate this challenge. First, we use a sliding window to convert the user’s energy consumption time series into a Bandt-Pompe (BP) probability distribution function. Then, we extract the used ITQ. Finally, we apply each metric to the Probability Density Function (PDF) and map the layers to characterize their behavior. The characterization method is advantageous to be used when we have big data. Overall, our best results have been recorded in the fraud detection-based time series classifiers (TSC) model, improving the empirical performance metrics by 10% or more over the other developed models. Our results show that users with normal and abnormal energy consumption can be distinguished using only Information Theory Quantifiers by considering the range of values for each metric.Submitted by Ivone Costa (mivone@ufpa.br) on 2024-11-08T15:25:26Z No. of bitstreams: 1 Tese_ClassificationCharacterizationMethods.pdf: 1809924 bytes, checksum: 22f75b1dc38f9b6d86df68266734e1b7 (MD5)Approved for entry into archive by Ivone Costa (mivone@ufpa.br) on 2024-11-08T15:25:49Z (GMT) No. of bitstreams: 1 Tese_ClassificationCharacterizationMethods.pdf: 1809924 bytes, checksum: 22f75b1dc38f9b6d86df68266734e1b7 (MD5)Made available in DSpace on 2024-11-08T15:25:50Z (GMT). No. of bitstreams: 1 Tese_ClassificationCharacterizationMethods.pdf: 1809924 bytes, checksum: 22f75b1dc38f9b6d86df68266734e1b7 (MD5) Previous issue date: 2024-03-28porUniversidade Federal do ParáPrograma de Pós-Graduação em Engenharia ElétricaUFPABrasilInstituto de TecnologiaAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDisponível na internet via correio eletrônico: bibliotecaitec@ufpa.brreponame:Repositório Institucional da UFPAinstname:Universidade Federal do Pará (UFPA)instacron:UFPACNPQ::ENGENHARIAS::ENGENHARIA ELETRICAINTELIGÊNCIA COMPUTACIONALCOMPUTAÇÃO APLICADASmart metersInformation theory quantifiersSmart gridNon technical lossesEnsemble learningClassification and characterization methods of non-tchnical losses on smart grid scenariosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCERQUEIRA, Eduardo Coelhottp://lattes.cnpq.br/1028151705135221ROSÁRIO, Denis Lima dohttp://lattes.cnpq.br/8273198217435163https://orcid.org/0000-0003-1119-2450http://lattes.cnpq.br/8981527024841645BASTOS, Lucas de LimaORIGINALTese_ClassificationCharacterizationMethods.pdfTese_ClassificationCharacterizationMethods.pdfapplication/pdf1809924https://repositorio.ufpa.br/oai/bitstream/2011/16616/1/Tese_ClassificationCharacterizationMethods.pdf22f75b1dc38f9b6d86df68266734e1b7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81890https://repositorio.ufpa.br/oai/bitstream/2011/16616/2/license.txt2b55adef5313c442051bad36d3312b2bMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpa.br/oai/bitstream/2011/16616/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD532011/166162025-03-18 15:45:35.665oai:repositorio.ufpa.br:2011/16616TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUGFyw6EgKFJJVUZQQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEgc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gUklVRlBBIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJJVUZQQSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIAoKVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgcHVibGljYcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIGFvIFJJVUZQQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gCm91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIFJJVUZQQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpa.br/oai/requestriufpabc@ufpa.bropendoar:21232025-03-18T18:45:35Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)false |
| dc.title.pt_BR.fl_str_mv |
Classification and characterization methods of non-tchnical losses on smart grid scenarios |
| title |
Classification and characterization methods of non-tchnical losses on smart grid scenarios |
| spellingShingle |
Classification and characterization methods of non-tchnical losses on smart grid scenarios BASTOS, Lucas de Lima CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Smart meters Information theory quantifiers Smart grid Non technical losses Ensemble learning INTELIGÊNCIA COMPUTACIONAL COMPUTAÇÃO APLICADA |
| title_short |
Classification and characterization methods of non-tchnical losses on smart grid scenarios |
| title_full |
Classification and characterization methods of non-tchnical losses on smart grid scenarios |
| title_fullStr |
Classification and characterization methods of non-tchnical losses on smart grid scenarios |
| title_full_unstemmed |
Classification and characterization methods of non-tchnical losses on smart grid scenarios |
| title_sort |
Classification and characterization methods of non-tchnical losses on smart grid scenarios |
| author |
BASTOS, Lucas de Lima |
| author_facet |
BASTOS, Lucas de Lima |
| author_role |
author |
| dc.contributor.advisor-co1ORCID.pt_BR.fl_str_mv |
https://orcid.org/0000-0003-1119-2450 |
| dc.contributor.advisor1.fl_str_mv |
CERQUEIRA, Eduardo Coelho |
| dc.contributor.advisor1Lattes.fl_str_mv |
ttp://lattes.cnpq.br/1028151705135221 |
| dc.contributor.advisor-co1.fl_str_mv |
ROSÁRIO, Denis Lima do |
| dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/8273198217435163 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8981527024841645 |
| dc.contributor.author.fl_str_mv |
BASTOS, Lucas de Lima |
| contributor_str_mv |
CERQUEIRA, Eduardo Coelho ROSÁRIO, Denis Lima do |
| dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| topic |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Smart meters Information theory quantifiers Smart grid Non technical losses Ensemble learning INTELIGÊNCIA COMPUTACIONAL COMPUTAÇÃO APLICADA |
| dc.subject.por.fl_str_mv |
Smart meters Information theory quantifiers Smart grid Non technical losses Ensemble learning |
| dc.subject.linhadepesquisa.pt_BR.fl_str_mv |
INTELIGÊNCIA COMPUTACIONAL |
| dc.subject.areadeconcentracao.pt_BR.fl_str_mv |
COMPUTAÇÃO APLICADA |
| description |
Nowadays, grid resilience as a feature has become non-negotiable, significantly when power interruptions can impact the economy and society. Smart Grids (SGs) widespread popularity enables an immense amount of fine-grained e lectricity consumption data to be collected. However, risks can still exist in the Smart Grid (SG), since SG systems exchange valuable data, the distribution system loses substantial electrical energy. We divide this loss into two categories: technical and non-technical loss. A substantial amount of electrical energy is lost throughout the distribution system, and these losses are divided into two types: technical and non-technical. Non-technical losses (NTL) are any electrical energy consumed that is not invoiced. They may occur due to illegal connections, fraudulent activities, issues with energy meters such as delay in the installation or reading errors, contaminated, defective, or non-adapted measuring equipment, very low valid consumption estimates, faulty connections, and disregarded customers. Non-technical losses are the primary cause of revenue loss in the SG. Annually, electrical utilities incur billions in losses due to non-technical reasons. This thesis presents two detection methods of NTL: classification a nd c haracterization. We c reate a n ensemble predictor-based time series classifier t o c lassify N TL d etection. T his p redictor u ses the user’s energy consumption as a data input for classification, f rom s plitting t he d ata to executing the classifier. A lso, i t a ssumes t he t emporal a spects o f e nergy consumption data during the pre-processing, training, testing, and validation stages. The classification method has the advantage of classifying heterogeneous features in data. The characterization method proposes a study based on Information Theory Quantifiers (ITQ) to mitigate this challenge. First, we use a sliding window to convert the user’s energy consumption time series into a Bandt-Pompe (BP) probability distribution function. Then, we extract the used ITQ. Finally, we apply each metric to the Probability Density Function (PDF) and map the layers to characterize their behavior. The characterization method is advantageous to be used when we have big data. Overall, our best results have been recorded in the fraud detection-based time series classifiers (TSC) model, improving the empirical performance metrics by 10% or more over the other developed models. Our results show that users with normal and abnormal energy consumption can be distinguished using only Information Theory Quantifiers by considering the range of values for each metric. |
| publishDate |
2024 |
| dc.date.accessioned.fl_str_mv |
2024-11-08T15:25:50Z |
| dc.date.available.fl_str_mv |
2024-11-08T15:25:50Z |
| dc.date.issued.fl_str_mv |
2024-03-28 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
BASTOS, Lucas de Lima. Classification and characterization methods of non-tchnical losses on smart grid scenarios. Orientador: Eduardo Coelho Cerqueira. 2024. 75 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16616. Acesso em:. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufpa.br/jspui/handle/2011/16616 |
| identifier_str_mv |
BASTOS, Lucas de Lima. Classification and characterization methods of non-tchnical losses on smart grid scenarios. Orientador: Eduardo Coelho Cerqueira. 2024. 75 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16616. Acesso em:. |
| url |
https://repositorio.ufpa.br/jspui/handle/2011/16616 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Pará |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
| dc.publisher.initials.fl_str_mv |
UFPA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Tecnologia |
| publisher.none.fl_str_mv |
Universidade Federal do Pará |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPA instname:Universidade Federal do Pará (UFPA) instacron:UFPA |
| instname_str |
Universidade Federal do Pará (UFPA) |
| instacron_str |
UFPA |
| institution |
UFPA |
| reponame_str |
Repositório Institucional da UFPA |
| collection |
Repositório Institucional da UFPA |
| dc.source.uri.pt_BR.fl_str_mv |
Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br |
| bitstream.url.fl_str_mv |
https://repositorio.ufpa.br/oai/bitstream/2011/16616/1/Tese_ClassificationCharacterizationMethods.pdf https://repositorio.ufpa.br/oai/bitstream/2011/16616/2/license.txt https://repositorio.ufpa.br/oai/bitstream/2011/16616/3/license_rdf |
| bitstream.checksum.fl_str_mv |
22f75b1dc38f9b6d86df68266734e1b7 2b55adef5313c442051bad36d3312b2b e39d27027a6cc9cb039ad269a5db8e34 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA) |
| repository.mail.fl_str_mv |
riufpabc@ufpa.br |
| _version_ |
1842907902359109632 |