Exportação concluída — 

Classification and characterization methods of non-tchnical losses on smart grid scenarios

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: BASTOS, Lucas de Lima lattes
Orientador(a): CERQUEIRA, Eduardo Coelho lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Pará
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Elétrica
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufpa.br/jspui/handle/2011/16616
Resumo: Nowadays, grid resilience as a feature has become non-negotiable, significantly when power interruptions can impact the economy and society. Smart Grids (SGs) widespread popularity enables an immense amount of fine-grained e lectricity consumption data to be collected. However, risks can still exist in the Smart Grid (SG), since SG systems exchange valuable data, the distribution system loses substantial electrical energy. We divide this loss into two categories: technical and non-technical loss. A substantial amount of electrical energy is lost throughout the distribution system, and these losses are divided into two types: technical and non-technical. Non-technical losses (NTL) are any electrical energy consumed that is not invoiced. They may occur due to illegal connections, fraudulent activities, issues with energy meters such as delay in the installation or reading errors, contaminated, defective, or non-adapted measuring equipment, very low valid consumption estimates, faulty connections, and disregarded customers. Non-technical losses are the primary cause of revenue loss in the SG. Annually, electrical utilities incur billions in losses due to non-technical reasons. This thesis presents two detection methods of NTL: classification a nd c haracterization. We c reate a n ensemble predictor-based time series classifier t o c lassify N TL d etection. T his p redictor u ses the user’s energy consumption as a data input for classification, f rom s plitting t he d ata to executing the classifier. A lso, i t a ssumes t he t emporal a spects o f e nergy consumption data during the pre-processing, training, testing, and validation stages. The classification method has the advantage of classifying heterogeneous features in data. The characterization method proposes a study based on Information Theory Quantifiers (ITQ) to mitigate this challenge. First, we use a sliding window to convert the user’s energy consumption time series into a Bandt-Pompe (BP) probability distribution function. Then, we extract the used ITQ. Finally, we apply each metric to the Probability Density Function (PDF) and map the layers to characterize their behavior. The characterization method is advantageous to be used when we have big data. Overall, our best results have been recorded in the fraud detection-based time series classifiers (TSC) model, improving the empirical performance metrics by 10% or more over the other developed models. Our results show that users with normal and abnormal energy consumption can be distinguished using only Information Theory Quantifiers by considering the range of values for each metric.
id UFPA_596d17d897d00bdd283557005762cde3
oai_identifier_str oai:repositorio.ufpa.br:2011/16616
network_acronym_str UFPA
network_name_str Repositório Institucional da UFPA
repository_id_str
spelling 2024-11-08T15:25:50Z2024-11-08T15:25:50Z2024-03-28BASTOS, Lucas de Lima. Classification and characterization methods of non-tchnical losses on smart grid scenarios. Orientador: Eduardo Coelho Cerqueira. 2024. 75 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16616. Acesso em:.https://repositorio.ufpa.br/jspui/handle/2011/16616Nowadays, grid resilience as a feature has become non-negotiable, significantly when power interruptions can impact the economy and society. Smart Grids (SGs) widespread popularity enables an immense amount of fine-grained e lectricity consumption data to be collected. However, risks can still exist in the Smart Grid (SG), since SG systems exchange valuable data, the distribution system loses substantial electrical energy. We divide this loss into two categories: technical and non-technical loss. A substantial amount of electrical energy is lost throughout the distribution system, and these losses are divided into two types: technical and non-technical. Non-technical losses (NTL) are any electrical energy consumed that is not invoiced. They may occur due to illegal connections, fraudulent activities, issues with energy meters such as delay in the installation or reading errors, contaminated, defective, or non-adapted measuring equipment, very low valid consumption estimates, faulty connections, and disregarded customers. Non-technical losses are the primary cause of revenue loss in the SG. Annually, electrical utilities incur billions in losses due to non-technical reasons. This thesis presents two detection methods of NTL: classification a nd c haracterization. We c reate a n ensemble predictor-based time series classifier t o c lassify N TL d etection. T his p redictor u ses the user’s energy consumption as a data input for classification, f rom s plitting t he d ata to executing the classifier. A lso, i t a ssumes t he t emporal a spects o f e nergy consumption data during the pre-processing, training, testing, and validation stages. The classification method has the advantage of classifying heterogeneous features in data. The characterization method proposes a study based on Information Theory Quantifiers (ITQ) to mitigate this challenge. First, we use a sliding window to convert the user’s energy consumption time series into a Bandt-Pompe (BP) probability distribution function. Then, we extract the used ITQ. Finally, we apply each metric to the Probability Density Function (PDF) and map the layers to characterize their behavior. The characterization method is advantageous to be used when we have big data. Overall, our best results have been recorded in the fraud detection-based time series classifiers (TSC) model, improving the empirical performance metrics by 10% or more over the other developed models. Our results show that users with normal and abnormal energy consumption can be distinguished using only Information Theory Quantifiers by considering the range of values for each metric.Submitted by Ivone Costa (mivone@ufpa.br) on 2024-11-08T15:25:26Z No. of bitstreams: 1 Tese_ClassificationCharacterizationMethods.pdf: 1809924 bytes, checksum: 22f75b1dc38f9b6d86df68266734e1b7 (MD5)Approved for entry into archive by Ivone Costa (mivone@ufpa.br) on 2024-11-08T15:25:49Z (GMT) No. of bitstreams: 1 Tese_ClassificationCharacterizationMethods.pdf: 1809924 bytes, checksum: 22f75b1dc38f9b6d86df68266734e1b7 (MD5)Made available in DSpace on 2024-11-08T15:25:50Z (GMT). No. of bitstreams: 1 Tese_ClassificationCharacterizationMethods.pdf: 1809924 bytes, checksum: 22f75b1dc38f9b6d86df68266734e1b7 (MD5) Previous issue date: 2024-03-28porUniversidade Federal do ParáPrograma de Pós-Graduação em Engenharia ElétricaUFPABrasilInstituto de TecnologiaAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDisponível na internet via correio eletrônico: bibliotecaitec@ufpa.brreponame:Repositório Institucional da UFPAinstname:Universidade Federal do Pará (UFPA)instacron:UFPACNPQ::ENGENHARIAS::ENGENHARIA ELETRICAINTELIGÊNCIA COMPUTACIONALCOMPUTAÇÃO APLICADASmart metersInformation theory quantifiersSmart gridNon technical lossesEnsemble learningClassification and characterization methods of non-tchnical losses on smart grid scenariosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCERQUEIRA, Eduardo Coelhottp://lattes.cnpq.br/1028151705135221ROSÁRIO, Denis Lima dohttp://lattes.cnpq.br/8273198217435163https://orcid.org/0000-0003-1119-2450http://lattes.cnpq.br/8981527024841645BASTOS, Lucas de LimaORIGINALTese_ClassificationCharacterizationMethods.pdfTese_ClassificationCharacterizationMethods.pdfapplication/pdf1809924https://repositorio.ufpa.br/oai/bitstream/2011/16616/1/Tese_ClassificationCharacterizationMethods.pdf22f75b1dc38f9b6d86df68266734e1b7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81890https://repositorio.ufpa.br/oai/bitstream/2011/16616/2/license.txt2b55adef5313c442051bad36d3312b2bMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpa.br/oai/bitstream/2011/16616/3/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD532011/166162025-03-18 15:45:35.665oai:repositorio.ufpa.br:2011/16616TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUGFyw6EgKFJJVUZQQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEgc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gUklVRlBBIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJJVUZQQSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIAoKVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgcHVibGljYcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIGFvIFJJVUZQQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gCm91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIFJJVUZQQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpa.br/oai/requestriufpabc@ufpa.bropendoar:21232025-03-18T18:45:35Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)false
dc.title.pt_BR.fl_str_mv Classification and characterization methods of non-tchnical losses on smart grid scenarios
title Classification and characterization methods of non-tchnical losses on smart grid scenarios
spellingShingle Classification and characterization methods of non-tchnical losses on smart grid scenarios
BASTOS, Lucas de Lima
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Smart meters
Information theory quantifiers
Smart grid
Non technical losses
Ensemble learning
INTELIGÊNCIA COMPUTACIONAL
COMPUTAÇÃO APLICADA
title_short Classification and characterization methods of non-tchnical losses on smart grid scenarios
title_full Classification and characterization methods of non-tchnical losses on smart grid scenarios
title_fullStr Classification and characterization methods of non-tchnical losses on smart grid scenarios
title_full_unstemmed Classification and characterization methods of non-tchnical losses on smart grid scenarios
title_sort Classification and characterization methods of non-tchnical losses on smart grid scenarios
author BASTOS, Lucas de Lima
author_facet BASTOS, Lucas de Lima
author_role author
dc.contributor.advisor-co1ORCID.pt_BR.fl_str_mv https://orcid.org/0000-0003-1119-2450
dc.contributor.advisor1.fl_str_mv CERQUEIRA, Eduardo Coelho
dc.contributor.advisor1Lattes.fl_str_mv ttp://lattes.cnpq.br/1028151705135221
dc.contributor.advisor-co1.fl_str_mv ROSÁRIO, Denis Lima do
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/8273198217435163
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8981527024841645
dc.contributor.author.fl_str_mv BASTOS, Lucas de Lima
contributor_str_mv CERQUEIRA, Eduardo Coelho
ROSÁRIO, Denis Lima do
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Smart meters
Information theory quantifiers
Smart grid
Non technical losses
Ensemble learning
INTELIGÊNCIA COMPUTACIONAL
COMPUTAÇÃO APLICADA
dc.subject.por.fl_str_mv Smart meters
Information theory quantifiers
Smart grid
Non technical losses
Ensemble learning
dc.subject.linhadepesquisa.pt_BR.fl_str_mv INTELIGÊNCIA COMPUTACIONAL
dc.subject.areadeconcentracao.pt_BR.fl_str_mv COMPUTAÇÃO APLICADA
description Nowadays, grid resilience as a feature has become non-negotiable, significantly when power interruptions can impact the economy and society. Smart Grids (SGs) widespread popularity enables an immense amount of fine-grained e lectricity consumption data to be collected. However, risks can still exist in the Smart Grid (SG), since SG systems exchange valuable data, the distribution system loses substantial electrical energy. We divide this loss into two categories: technical and non-technical loss. A substantial amount of electrical energy is lost throughout the distribution system, and these losses are divided into two types: technical and non-technical. Non-technical losses (NTL) are any electrical energy consumed that is not invoiced. They may occur due to illegal connections, fraudulent activities, issues with energy meters such as delay in the installation or reading errors, contaminated, defective, or non-adapted measuring equipment, very low valid consumption estimates, faulty connections, and disregarded customers. Non-technical losses are the primary cause of revenue loss in the SG. Annually, electrical utilities incur billions in losses due to non-technical reasons. This thesis presents two detection methods of NTL: classification a nd c haracterization. We c reate a n ensemble predictor-based time series classifier t o c lassify N TL d etection. T his p redictor u ses the user’s energy consumption as a data input for classification, f rom s plitting t he d ata to executing the classifier. A lso, i t a ssumes t he t emporal a spects o f e nergy consumption data during the pre-processing, training, testing, and validation stages. The classification method has the advantage of classifying heterogeneous features in data. The characterization method proposes a study based on Information Theory Quantifiers (ITQ) to mitigate this challenge. First, we use a sliding window to convert the user’s energy consumption time series into a Bandt-Pompe (BP) probability distribution function. Then, we extract the used ITQ. Finally, we apply each metric to the Probability Density Function (PDF) and map the layers to characterize their behavior. The characterization method is advantageous to be used when we have big data. Overall, our best results have been recorded in the fraud detection-based time series classifiers (TSC) model, improving the empirical performance metrics by 10% or more over the other developed models. Our results show that users with normal and abnormal energy consumption can be distinguished using only Information Theory Quantifiers by considering the range of values for each metric.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-11-08T15:25:50Z
dc.date.available.fl_str_mv 2024-11-08T15:25:50Z
dc.date.issued.fl_str_mv 2024-03-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BASTOS, Lucas de Lima. Classification and characterization methods of non-tchnical losses on smart grid scenarios. Orientador: Eduardo Coelho Cerqueira. 2024. 75 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16616. Acesso em:.
dc.identifier.uri.fl_str_mv https://repositorio.ufpa.br/jspui/handle/2011/16616
identifier_str_mv BASTOS, Lucas de Lima. Classification and characterization methods of non-tchnical losses on smart grid scenarios. Orientador: Eduardo Coelho Cerqueira. 2024. 75 f. Tese (Doutorado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16616. Acesso em:.
url https://repositorio.ufpa.br/jspui/handle/2011/16616
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Pará
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv UFPA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal do Pará
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPA
instname:Universidade Federal do Pará (UFPA)
instacron:UFPA
instname_str Universidade Federal do Pará (UFPA)
instacron_str UFPA
institution UFPA
reponame_str Repositório Institucional da UFPA
collection Repositório Institucional da UFPA
dc.source.uri.pt_BR.fl_str_mv Disponível na internet via correio eletrônico: bibliotecaitec@ufpa.br
bitstream.url.fl_str_mv https://repositorio.ufpa.br/oai/bitstream/2011/16616/1/Tese_ClassificationCharacterizationMethods.pdf
https://repositorio.ufpa.br/oai/bitstream/2011/16616/2/license.txt
https://repositorio.ufpa.br/oai/bitstream/2011/16616/3/license_rdf
bitstream.checksum.fl_str_mv 22f75b1dc38f9b6d86df68266734e1b7
2b55adef5313c442051bad36d3312b2b
e39d27027a6cc9cb039ad269a5db8e34
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)
repository.mail.fl_str_mv riufpabc@ufpa.br
_version_ 1842907902359109632