Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero.
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Pará
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Elétrica
|
| Departamento: |
Instituto de Tecnologia
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.ufpa.br/jspui/handle/2011/16757 |
Resumo: | O exame preventivo de colo de útero é um método de triagem amplamente utilizado para detectar câncer cervical e lesões pré-cancerosas. A classificação automatizada dos resultados pode auxiliar os profissionais de saúde a identificar com precisão padrões de citologia anormais, aumentando a acurácia e a consistência na detecção de anomalias. Além disso, a sistematização dessa solução pode reduzir o tempo de análise e os custos associados, possibilitando a disponibilização de um pré-diagnóstico imediato, especialmente em áreas remotas. Essa abordagem também possui potencial para integração em sistemas de saúde pública, contribuindo para um atendimento mais eficiente e acessível. Assim, este estudo propõe a aplicação dos modelos pré-treinados de rede neurais convolucionais VGG16 e VGG19 para classificação das imagens resultantes da técnica de citologia em base líquida, fazendo um comparativo de desempenho entre a classificação de 4 classes ou de 2 classes com dados balanceados e desbalanceados. Testou-se varias arquiteturas e como resultados foram obtidas acurácias de até 98% obtendo também boas métricas de classificação, mostrando-se como potencial solução para auxilio de profissionais da saúde em uma classificação mais assertiva desses resultados. |
| id |
UFPA_ff6d66c8672fd1d1dc0f9008a14e29f8 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpa.br:2011/16757 |
| network_acronym_str |
UFPA |
| network_name_str |
Repositório Institucional da UFPA |
| repository_id_str |
|
| spelling |
2025-01-24T18:57:59Z2025-01-24T18:57:59Z2024-09-18COSTA, Edriane do Socorro Silva. Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. Orientador: Carlos Renato Lisboa Francês. 2024. 78 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16757. Acesso em:.https://repositorio.ufpa.br/jspui/handle/2011/16757O exame preventivo de colo de útero é um método de triagem amplamente utilizado para detectar câncer cervical e lesões pré-cancerosas. A classificação automatizada dos resultados pode auxiliar os profissionais de saúde a identificar com precisão padrões de citologia anormais, aumentando a acurácia e a consistência na detecção de anomalias. Além disso, a sistematização dessa solução pode reduzir o tempo de análise e os custos associados, possibilitando a disponibilização de um pré-diagnóstico imediato, especialmente em áreas remotas. Essa abordagem também possui potencial para integração em sistemas de saúde pública, contribuindo para um atendimento mais eficiente e acessível. Assim, este estudo propõe a aplicação dos modelos pré-treinados de rede neurais convolucionais VGG16 e VGG19 para classificação das imagens resultantes da técnica de citologia em base líquida, fazendo um comparativo de desempenho entre a classificação de 4 classes ou de 2 classes com dados balanceados e desbalanceados. Testou-se varias arquiteturas e como resultados foram obtidas acurácias de até 98% obtendo também boas métricas de classificação, mostrando-se como potencial solução para auxilio de profissionais da saúde em uma classificação mais assertiva desses resultados.The cervical screening exam is a widely used method to detect cervical cancer and precancerous lesions. Automated classification of the results can assist healthcare professionals in accurately identifying abnormal cytology patterns, increasing accuracy and consistency in detecting anomalies. Furthermore, systematizing this solution can reduce analysis time and associated costs, enabling the provision of an immediate pre-diagnosis, especially in remote areas. This approach also has the potential for integration into public health systems, contributing to more efficient and accessible care. Therefore, this study proposes the application of pre-trained convolutional neural network models VGG16 and VGG19 for classifying images resulting from the liquid-based cytology technique, comparing the performance of 4-class versus 2-class classification with balanced and unbalanced data. Several architectures were tested, and accuracies of up to 98% were achieved, along with good classification metrics, showing potential as a solution to assist healthcare professionals in more assertive classification of these results.Submitted by Luciclea Silva (luci@ufpa.br) on 2025-01-24T18:56:55Z No. of bitstreams: 2 Dissertacao_RedesNeuraisConvolucionais.pdf: 1177671 bytes, checksum: e12c93aa50d0c4ee28e700b00905cc65 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)Approved for entry into archive by Luciclea Silva (luci@ufpa.br) on 2025-01-24T18:57:58Z (GMT) No. of bitstreams: 2 Dissertacao_RedesNeuraisConvolucionais.pdf: 1177671 bytes, checksum: e12c93aa50d0c4ee28e700b00905cc65 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)Made available in DSpace on 2025-01-24T18:57:59Z (GMT). No. of bitstreams: 2 Dissertacao_RedesNeuraisConvolucionais.pdf: 1177671 bytes, checksum: e12c93aa50d0c4ee28e700b00905cc65 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Previous issue date: 2024-09-18porUniversidade Federal do ParáPrograma de Pós-Graduação em Engenharia ElétricaUFPABrasilInstituto de TecnologiaAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessDisponível via internert através do correio eletrônico: bibliotecaitec@ufpa.brreponame:Repositório Institucional da UFPAinstname:Universidade Federal do Pará (UFPA)instacron:UFPACNPQ::ENGENHARIAS::ENGENHARIA ELETRICAINTELIGÊNCIA COMPUTACIONALCOMPUTAÇÃO APLICADAVisão computacionalCNN (rede neural convolucional)Papanicolau Classificação Automatizada Automated ClassificationClassificação AutomatizadaComputer visionCNN (Convolutional neural network)Pap SmearAutomated classificationRedes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisFRANCÊS, Carlos Renato Lisboahttp://lattes.cnpq.br/7458287841862567http://lattes.cnpq.br/7671800465740722COSTA, Edriane do Socorro SilvaORIGINALDissertacao_RedesNeuraisConvolucionais.pdfDissertacao_RedesNeuraisConvolucionais.pdfapplication/pdf1177671https://repositorio.ufpa.br/oai/bitstream/2011/16757/1/Dissertacao_RedesNeuraisConvolucionais.pdfe12c93aa50d0c4ee28e700b00905cc65MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpa.br/oai/bitstream/2011/16757/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81890https://repositorio.ufpa.br/oai/bitstream/2011/16757/3/license.txt2b55adef5313c442051bad36d3312b2bMD532011/167572025-02-25 10:46:00.022oai:repositorio.ufpa.br:2011/16757TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gUGFyw6EgKFJJVUZQQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEgc3VhIHB1YmxpY2HDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gUklVRlBBIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJJVUZQQSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIAoKVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgcHVibGljYcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIGFvIFJJVUZQQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gCm91IG5vIGNvbnRlw7pkbyBkYSBwdWJsaWNhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgUFVCTElDQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIFJJVUZQQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpa.br/oai/requestriufpabc@ufpa.bropendoar:21232025-02-25T13:46Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA)false |
| dc.title.pt_BR.fl_str_mv |
Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. |
| title |
Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. |
| spellingShingle |
Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. COSTA, Edriane do Socorro Silva CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Visão computacional CNN (rede neural convolucional) Papanicolau Classificação Automatizada Automated Classification Classificação Automatizada Computer vision CNN (Convolutional neural network) Pap Smear Automated classification INTELIGÊNCIA COMPUTACIONAL COMPUTAÇÃO APLICADA |
| title_short |
Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. |
| title_full |
Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. |
| title_fullStr |
Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. |
| title_full_unstemmed |
Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. |
| title_sort |
Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. |
| author |
COSTA, Edriane do Socorro Silva |
| author_facet |
COSTA, Edriane do Socorro Silva |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
FRANCÊS, Carlos Renato Lisboa |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7458287841862567 |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7671800465740722 |
| dc.contributor.author.fl_str_mv |
COSTA, Edriane do Socorro Silva |
| contributor_str_mv |
FRANCÊS, Carlos Renato Lisboa |
| dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| topic |
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Visão computacional CNN (rede neural convolucional) Papanicolau Classificação Automatizada Automated Classification Classificação Automatizada Computer vision CNN (Convolutional neural network) Pap Smear Automated classification INTELIGÊNCIA COMPUTACIONAL COMPUTAÇÃO APLICADA |
| dc.subject.por.fl_str_mv |
Visão computacional CNN (rede neural convolucional) Papanicolau Classificação Automatizada Automated Classification Classificação Automatizada |
| dc.subject.eng.fl_str_mv |
Computer vision CNN (Convolutional neural network) Pap Smear Automated classification |
| dc.subject.linhadepesquisa.pt_BR.fl_str_mv |
INTELIGÊNCIA COMPUTACIONAL |
| dc.subject.areadeconcentracao.pt_BR.fl_str_mv |
COMPUTAÇÃO APLICADA |
| description |
O exame preventivo de colo de útero é um método de triagem amplamente utilizado para detectar câncer cervical e lesões pré-cancerosas. A classificação automatizada dos resultados pode auxiliar os profissionais de saúde a identificar com precisão padrões de citologia anormais, aumentando a acurácia e a consistência na detecção de anomalias. Além disso, a sistematização dessa solução pode reduzir o tempo de análise e os custos associados, possibilitando a disponibilização de um pré-diagnóstico imediato, especialmente em áreas remotas. Essa abordagem também possui potencial para integração em sistemas de saúde pública, contribuindo para um atendimento mais eficiente e acessível. Assim, este estudo propõe a aplicação dos modelos pré-treinados de rede neurais convolucionais VGG16 e VGG19 para classificação das imagens resultantes da técnica de citologia em base líquida, fazendo um comparativo de desempenho entre a classificação de 4 classes ou de 2 classes com dados balanceados e desbalanceados. Testou-se varias arquiteturas e como resultados foram obtidas acurácias de até 98% obtendo também boas métricas de classificação, mostrando-se como potencial solução para auxilio de profissionais da saúde em uma classificação mais assertiva desses resultados. |
| publishDate |
2024 |
| dc.date.issued.fl_str_mv |
2024-09-18 |
| dc.date.accessioned.fl_str_mv |
2025-01-24T18:57:59Z |
| dc.date.available.fl_str_mv |
2025-01-24T18:57:59Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
COSTA, Edriane do Socorro Silva. Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. Orientador: Carlos Renato Lisboa Francês. 2024. 78 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16757. Acesso em:. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufpa.br/jspui/handle/2011/16757 |
| identifier_str_mv |
COSTA, Edriane do Socorro Silva. Redes Neurais Convolucionais para Auxiliar no Diagnóstico de Exames Preventivo de Colo de Útero. Orientador: Carlos Renato Lisboa Francês. 2024. 78 f. Dissertação (Mestrado em Engenharia Elétrica) - Instituto de Tecnologia, Universidade Federal do Pará, Belém, 2024. Disponível em: https://repositorio.ufpa.br/jspui/handle/2011/16757. Acesso em:. |
| url |
https://repositorio.ufpa.br/jspui/handle/2011/16757 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Pará |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Elétrica |
| dc.publisher.initials.fl_str_mv |
UFPA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Tecnologia |
| publisher.none.fl_str_mv |
Universidade Federal do Pará |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPA instname:Universidade Federal do Pará (UFPA) instacron:UFPA |
| instname_str |
Universidade Federal do Pará (UFPA) |
| instacron_str |
UFPA |
| institution |
UFPA |
| reponame_str |
Repositório Institucional da UFPA |
| collection |
Repositório Institucional da UFPA |
| dc.source.uri.pt_BR.fl_str_mv |
Disponível via internert através do correio eletrônico: bibliotecaitec@ufpa.br |
| bitstream.url.fl_str_mv |
https://repositorio.ufpa.br/oai/bitstream/2011/16757/1/Dissertacao_RedesNeuraisConvolucionais.pdf https://repositorio.ufpa.br/oai/bitstream/2011/16757/2/license_rdf https://repositorio.ufpa.br/oai/bitstream/2011/16757/3/license.txt |
| bitstream.checksum.fl_str_mv |
e12c93aa50d0c4ee28e700b00905cc65 e39d27027a6cc9cb039ad269a5db8e34 2b55adef5313c442051bad36d3312b2b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFPA - Universidade Federal do Pará (UFPA) |
| repository.mail.fl_str_mv |
riufpabc@ufpa.br |
| _version_ |
1842907975878967296 |