Redes residuais : sobre quantidade de camadas e variância intraclasse utilizando aprendizagem não supervisionada

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Silva, Cecília Flávia da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Informática
Programa de Pós-Graduação em Informática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/32234
Resumo: Deep Learning is a term in the literature to define different approaches of Deep Neural Networks (i.e. networks that have more than two hidden layers). From this, different network architectures have been proposed in the literature. These networks have been used as a reference for different applications, highlighting networks such as VGG-16, GoogLeNet, and residual networks (ResNets). Residual networks have a topology inspired by the VGG-16 since it uses stacks of convolutional layers of 3 x 3 filters. As the main contribution, it forms residual blocks through shortcut connections to reduce problems of model degradation. This problem increases the model error rate as the network depth increases. From this, ResNets of 20 to 1202 layers were proposed. However, the literature does not portray a pattern of use of these models according to a certain context. Therefore, this work aimed to carry out an agnostic study, which analyzes the performance of five residual networks, as well as the computational cost, for different databases. Overall, 15 datasets were used. ResNet models with 20, 32, 44, 56, and 110 layers were trained and evaluated for each dataset. Also, the performance of these networks was evaluated using F1 measure. Afterward, a significance test was performed using t Student distribution. In this test, the F1 measure of each network was analyzed to find out if there was a significant improvement in performance with increasing depth. However, the experiments indicated no improvement in results despite the increase in computational cost. Besides, the intraclass variance was analyzed for each class of the datasets using the k-means unsupervised learning algorithm. Also, the k-means clusters were evaluated according to the silhouette coefficient. Through this analysis, we discovered that at least one of the classes with lower F1 measure scores have low diversity. Thus, this work performed a set of experiments with ResNet-20 and data augmentation techniques to improve the results. The performance of the ResNet-20 network was superior to all previously evaluated networks. Based on this, the increase in depth of these networks results in high computational cost, which is also proportional to the number of samples in the database. However, this increase is not proportional to improvements in the results of the evaluated network models, resulting in an F1 measure without significant variations, with the use of data augmentation techniques being more effective than increasing the number of model layers.
id UFPB-2_691dc2448c116818997e23f0abda2c44
oai_identifier_str oai:repositorio.ufpb.br:123456789/32234
network_acronym_str UFPB-2
network_name_str Repositório Institucional da UFPB
repository_id_str
spelling Redes residuais : sobre quantidade de camadas e variância intraclasse utilizando aprendizagem não supervisionadaArquitetura de redesDeep learningIntraclasseData augmentationUnsupervised learningIntraclass varianceCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAODeep Learning is a term in the literature to define different approaches of Deep Neural Networks (i.e. networks that have more than two hidden layers). From this, different network architectures have been proposed in the literature. These networks have been used as a reference for different applications, highlighting networks such as VGG-16, GoogLeNet, and residual networks (ResNets). Residual networks have a topology inspired by the VGG-16 since it uses stacks of convolutional layers of 3 x 3 filters. As the main contribution, it forms residual blocks through shortcut connections to reduce problems of model degradation. This problem increases the model error rate as the network depth increases. From this, ResNets of 20 to 1202 layers were proposed. However, the literature does not portray a pattern of use of these models according to a certain context. Therefore, this work aimed to carry out an agnostic study, which analyzes the performance of five residual networks, as well as the computational cost, for different databases. Overall, 15 datasets were used. ResNet models with 20, 32, 44, 56, and 110 layers were trained and evaluated for each dataset. Also, the performance of these networks was evaluated using F1 measure. Afterward, a significance test was performed using t Student distribution. In this test, the F1 measure of each network was analyzed to find out if there was a significant improvement in performance with increasing depth. However, the experiments indicated no improvement in results despite the increase in computational cost. Besides, the intraclass variance was analyzed for each class of the datasets using the k-means unsupervised learning algorithm. Also, the k-means clusters were evaluated according to the silhouette coefficient. Through this analysis, we discovered that at least one of the classes with lower F1 measure scores have low diversity. Thus, this work performed a set of experiments with ResNet-20 and data augmentation techniques to improve the results. The performance of the ResNet-20 network was superior to all previously evaluated networks. Based on this, the increase in depth of these networks results in high computational cost, which is also proportional to the number of samples in the database. However, this increase is not proportional to improvements in the results of the evaluated network models, resulting in an F1 measure without significant variations, with the use of data augmentation techniques being more effective than increasing the number of model layers.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESDeep Learning é um termo que surgiu na literatura para, originalmente, definir abordagens de Redes Neurais Profundas (i.e. redes que possuem acima de duas camadas ocultas). A partir disso, diferentes arquiteturas de rede foram propostas na literatura e utilizadas como referência para diferentes aplicações, destacando-se redes como VGG-16, GoogLeNet e redes residuais (ResNets). Nesse contexto, redes residuais possuem uma topologia inspirada na VGG-16, utilizando assim pilhas de camadas convolucionais de filtros 3 x 3 e, como contribuição principal, formam blocos residuais por meio de shortcut connections, com o objetivo de reduzir problemas de degradação do modelo (i.e. aumento da taxa de erro do modelo conforme aumento de profundidade da rede). A partir disso, foram propostas ResNets de 20 até 1202 camadas, entretanto, a literatura não retrata um padrão de utilização desses modelos de acordo com um determinado contexto. Sendo assim, esse trabalho teve como objetivo a realização de um estudo agnóstico, que analisa o desempenho de cinco redes residuais, assim como o custo computacional, para diferentes bases de dados. Ao todo, 15 bases de dados foram utilizadas e os modelos ResNet 20, 32, 44, 56 e 110 camadas foram treinados e avaliados para cada uma delas, sendo o desempenho dessas redes avaliado por meio da medida F1. Posteriormente, realizou-se um teste de significância, utilizando a distribuição t de Student, em que analisou-se a medida F1 de cada rede, para avaliar se houve melhoria significativa de desempenho com o aumento de profundidade. Entretanto, os experimentos realizados indicaram que, apesar do aumento de custo computacional proporcional a profundidade, não houve melhoria de resultados. Além disso, analisou-se as características de variância intraclasse para cada classe das bases de dados desse estudo, utilizando o algoritmo de aprendizagem não supervisionada k-means, sendo os clusters formados por este algoritmo avaliados de acordo com o coeficiente de silhueta. Por meio dessa análise, percebeu-se que, dentre as classes com menor medida F1, para todas as redes avaliadas, pelo menos uma das classes retornou baixa diversidade, indicando-se assim, como solução, a melhoria de representatividade da base de dados ao invés do aumento de profundidade do modelo. Sendo assim, realizou-se treinamentos com a ResNet-20, tendo como diferencial a adição de diferentes técnicas de data augmentation, em que, para todas elas, o desempenho da rede ResNet-20 foi superior ao das demais redes previamente avaliadas. Dessa forma, por meio da análise, percebeu-se que o aumento de profundidade dessas redes resulta em alto custo computacional, sendo este também proporcional a quantidade de amostras na base de dados. Entretanto, este aumento não é proporcional a melhorias de resultados dos modelos de rede avaliados, resultando em medida F1 sem variações significativas, sendo a utilização de técnicas de data augmentation mais eficaz do que o aumento do número de camadas do modelo.Universidade Federal da ParaíbaBrasilInformáticaPrograma de Pós-Graduação em InformáticaUFPBRêgo, Thaís Gaudencio dohttp://lattes.cnpq.br/3166390632199101Silva, Cecília Flávia da2024-10-25T11:40:40Z2021-02-172024-10-25T11:40:40Z2020-07-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/32234porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2024-10-26T06:06:15Zoai:repositorio.ufpb.br:123456789/32234Repositório InstitucionalPUBhttps://repositorio.ufpb.br/oai/requestdiretoria@ufpb.br||bdtd@biblioteca.ufpb.bropendoar:25462024-10-26T06:06:15Repositório Institucional da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Redes residuais : sobre quantidade de camadas e variância intraclasse utilizando aprendizagem não supervisionada
title Redes residuais : sobre quantidade de camadas e variância intraclasse utilizando aprendizagem não supervisionada
spellingShingle Redes residuais : sobre quantidade de camadas e variância intraclasse utilizando aprendizagem não supervisionada
Silva, Cecília Flávia da
Arquitetura de redes
Deep learning
Intraclasse
Data augmentation
Unsupervised learning
Intraclass variance
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Redes residuais : sobre quantidade de camadas e variância intraclasse utilizando aprendizagem não supervisionada
title_full Redes residuais : sobre quantidade de camadas e variância intraclasse utilizando aprendizagem não supervisionada
title_fullStr Redes residuais : sobre quantidade de camadas e variância intraclasse utilizando aprendizagem não supervisionada
title_full_unstemmed Redes residuais : sobre quantidade de camadas e variância intraclasse utilizando aprendizagem não supervisionada
title_sort Redes residuais : sobre quantidade de camadas e variância intraclasse utilizando aprendizagem não supervisionada
author Silva, Cecília Flávia da
author_facet Silva, Cecília Flávia da
author_role author
dc.contributor.none.fl_str_mv Rêgo, Thaís Gaudencio do
http://lattes.cnpq.br/3166390632199101
dc.contributor.author.fl_str_mv Silva, Cecília Flávia da
dc.subject.por.fl_str_mv Arquitetura de redes
Deep learning
Intraclasse
Data augmentation
Unsupervised learning
Intraclass variance
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Arquitetura de redes
Deep learning
Intraclasse
Data augmentation
Unsupervised learning
Intraclass variance
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Deep Learning is a term in the literature to define different approaches of Deep Neural Networks (i.e. networks that have more than two hidden layers). From this, different network architectures have been proposed in the literature. These networks have been used as a reference for different applications, highlighting networks such as VGG-16, GoogLeNet, and residual networks (ResNets). Residual networks have a topology inspired by the VGG-16 since it uses stacks of convolutional layers of 3 x 3 filters. As the main contribution, it forms residual blocks through shortcut connections to reduce problems of model degradation. This problem increases the model error rate as the network depth increases. From this, ResNets of 20 to 1202 layers were proposed. However, the literature does not portray a pattern of use of these models according to a certain context. Therefore, this work aimed to carry out an agnostic study, which analyzes the performance of five residual networks, as well as the computational cost, for different databases. Overall, 15 datasets were used. ResNet models with 20, 32, 44, 56, and 110 layers were trained and evaluated for each dataset. Also, the performance of these networks was evaluated using F1 measure. Afterward, a significance test was performed using t Student distribution. In this test, the F1 measure of each network was analyzed to find out if there was a significant improvement in performance with increasing depth. However, the experiments indicated no improvement in results despite the increase in computational cost. Besides, the intraclass variance was analyzed for each class of the datasets using the k-means unsupervised learning algorithm. Also, the k-means clusters were evaluated according to the silhouette coefficient. Through this analysis, we discovered that at least one of the classes with lower F1 measure scores have low diversity. Thus, this work performed a set of experiments with ResNet-20 and data augmentation techniques to improve the results. The performance of the ResNet-20 network was superior to all previously evaluated networks. Based on this, the increase in depth of these networks results in high computational cost, which is also proportional to the number of samples in the database. However, this increase is not proportional to improvements in the results of the evaluated network models, resulting in an F1 measure without significant variations, with the use of data augmentation techniques being more effective than increasing the number of model layers.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-31
2021-02-17
2024-10-25T11:40:40Z
2024-10-25T11:40:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/32234
url https://repositorio.ufpb.br/jspui/handle/123456789/32234
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Informática
Programa de Pós-Graduação em Informática
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Informática
Programa de Pós-Graduação em Informática
UFPB
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Repositório Institucional da UFPB
collection Repositório Institucional da UFPB
repository.name.fl_str_mv Repositório Institucional da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br||bdtd@biblioteca.ufpb.br
_version_ 1833923275706597376