Previsão de demanda de cosméticos no varejo utilizando aprendizagem de máquina
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Informática Programa de Pós-Graduação em Informática UFPB |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpb.br/jspui/handle/123456789/32390 |
Resumo: | Data-driven decision making was facilitated due to the high availability of data and the greater processing power of computers. To assist in decision making, it is possible to extract information from data through Data Science. An example in which there is great applicability of this science in companies is demand forecasting within the Supply Chain Management area. Forecasting sales volume is not a trivial task and inaccuracies in this forecast can cause stock-outs or affect its management. In this study, sales forecasts will be made for two different sales channels using Machine Learning algorithms for a brand owned by a large company. This company is in the Cosmetics, Fragrances and Toiletries market, where Brazil is the fourth largest consumer market in the world. Data was used from the years 2018 to 2023 on sales in all Brazilian states. Forecasts were made for three different time horizons: short term (next period), medium term (approximately 3 months ahead) and long term (approximately 7 months ahead). The short term refers to the next cycle for the regression methods and the next week for the time series method, the medium term refers to 5 cycles ahead for the regression methods and 15 weeks ahead for the time series method and the long term refers to the forecast of 10 cycles ahead for the regression methods and 30 weeks ahead for the time series method. Therefore, the consistency of the Machine Learning models was also evaluated. The algorithms analyzed in this study were CatBoost, LightGBM, XGBoost and Prophet. Firstly, the aforementioned Gradient Boosting methods were compared in order to identify which of the three methods showed the greatest stability when predicting multiple horizons. XGBoost had the lowest forecast errors for the Store channel in all three horizons (10% for the short term, 2.12% for the medium term and 6.4% for the long term). For the Direct Sales channel, XGBoost didn’t have the lowest WAPE in all horizons, but it was more stable compared to CatBoost and LightGBM. Next, XGBoost was compared with a time series method, Prophet. Comparing the two models in different scenarios, it was concluded that Prophet showed more satisfactory results and more stability in forecasting multiple time horizons. |
| id |
UFPB-2_e37ddfbcf30467e0dea98b9efdb46e0b |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpb.br:123456789/32390 |
| network_acronym_str |
UFPB-2 |
| network_name_str |
Repositório Institucional da UFPB |
| repository_id_str |
|
| spelling |
Previsão de demanda de cosméticos no varejo utilizando aprendizagem de máquinaAprendizado de máquinaPrevisão de séries temporaisGradient boostingProphet - MétodoCosméticos no varejoTime Series ForecastingMachine LearningGradient BoostingProphetRetailCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOData-driven decision making was facilitated due to the high availability of data and the greater processing power of computers. To assist in decision making, it is possible to extract information from data through Data Science. An example in which there is great applicability of this science in companies is demand forecasting within the Supply Chain Management area. Forecasting sales volume is not a trivial task and inaccuracies in this forecast can cause stock-outs or affect its management. In this study, sales forecasts will be made for two different sales channels using Machine Learning algorithms for a brand owned by a large company. This company is in the Cosmetics, Fragrances and Toiletries market, where Brazil is the fourth largest consumer market in the world. Data was used from the years 2018 to 2023 on sales in all Brazilian states. Forecasts were made for three different time horizons: short term (next period), medium term (approximately 3 months ahead) and long term (approximately 7 months ahead). The short term refers to the next cycle for the regression methods and the next week for the time series method, the medium term refers to 5 cycles ahead for the regression methods and 15 weeks ahead for the time series method and the long term refers to the forecast of 10 cycles ahead for the regression methods and 30 weeks ahead for the time series method. Therefore, the consistency of the Machine Learning models was also evaluated. The algorithms analyzed in this study were CatBoost, LightGBM, XGBoost and Prophet. Firstly, the aforementioned Gradient Boosting methods were compared in order to identify which of the three methods showed the greatest stability when predicting multiple horizons. XGBoost had the lowest forecast errors for the Store channel in all three horizons (10% for the short term, 2.12% for the medium term and 6.4% for the long term). For the Direct Sales channel, XGBoost didn’t have the lowest WAPE in all horizons, but it was more stable compared to CatBoost and LightGBM. Next, XGBoost was compared with a time series method, Prophet. Comparing the two models in different scenarios, it was concluded that Prophet showed more satisfactory results and more stability in forecasting multiple time horizons.NenhumaA tomada de decisão baseada em dados foi facilitada devido à alta disponibilidade de dados e à maior capacidade de processamento dos computadores. Para auxiliar na tomada de decisão, é possível extrair informações dos dados através da Ciência de Dados. Um exemplo em que há grande aplicabilidade dessa ciência nas empresas é a previsão de demanda dentro da área de Gestão da Cadeia de Abastecimento. Fazer a previsão do volume de vendas não é uma tarefa trivial e, além disso, imprecisões nessa previsão podem causar ruptura de estoque ou afetar sua gestão. Neste estudo, será feita a previsão de vendas de dois canais de venda diferentes utilizando algoritmos de Aprendizado de Máquina para uma marca de uma grande empresa. Essa empresa está alocada no mercado de Higiene Pessoal, Perfumaria e Cosméticos, em que o Brasil é o quarto maior mercado consumidor do mundo. Foram utilizados dados dos anos de 2018 a 2023 de vendas que ocorreram em todos os estados brasileiros. As previsões foram feitas em três diferentes horizontes de tempo, sendo eles: curto prazo (próximo período), médio prazo (aproximadamente 3 meses à frente) e longo prazo (cerca de 7 meses à frente). O curto prazo é referente ao próximo ciclo para os métodos de regressão e próxima semana para o método de série temporal, o médio prazo é referente aos 5 ciclos à frente para os métodos de regressão e 15 semanas à frente para o método de série temporal e o longo prazo é referente à previsão de 10 ciclos à frente para os métodos de regressão e 30 semanas à frente para o método de série temporal. Sendo assim, a consistência dos modelos de Aprendizado de Máquina também foi avaliada. Os algoritmos analisados neste estudo foram: CatBoost, LightGBM, XGBoost e Prophet. Primeiramente, os métodos de Gradient Boosting mencionados foram comparados a fim de identificar qual dos três métodos indicou maior estabilidade ao prever múltiplos horizontes. O XGBoost apresentou os menores erros para o canal Loja na previsão em todos os três horizontes (10% para o curto prazo, 2,12% para o médio prazo e 6,4% para o longo prazo). Para o canal Venda Direta, o XGBoost não apresentou o menor WAPE em todos os horizontes, mas teve mais estabilidade em comparação ao CatBoost e ao LightGBM. Em sequência, o XGBoost foi comparado com um método de séries temporais, o Prophet. Comparando os dois modelos em cenários distintos, concluiu-se que o Prophet apresentou resultados mais satisfatórios e maior estabilidade na previsão de múltiplos horizontes temporais.Universidade Federal da ParaíbaBrasilInformáticaPrograma de Pós-Graduação em InformáticaUFPBRêgo, Thaís Gaudencio dohttp://lattes.cnpq.br/3166390632199101Barbosa, Yuri de Almeida Malheiroshttp://lattes.cnpq.br/6396235096236217Sousa, Ana Clara Chaves2024-11-11T17:32:38Z2024-04-272024-11-11T17:32:38Z2024-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/32390porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2024-11-12T06:06:47Zoai:repositorio.ufpb.br:123456789/32390Repositório InstitucionalPUBhttps://repositorio.ufpb.br/oai/requestdiretoria@ufpb.br||bdtd@biblioteca.ufpb.bropendoar:25462024-11-12T06:06:47Repositório Institucional da UFPB - Universidade Federal da Paraíba (UFPB)false |
| dc.title.none.fl_str_mv |
Previsão de demanda de cosméticos no varejo utilizando aprendizagem de máquina |
| title |
Previsão de demanda de cosméticos no varejo utilizando aprendizagem de máquina |
| spellingShingle |
Previsão de demanda de cosméticos no varejo utilizando aprendizagem de máquina Sousa, Ana Clara Chaves Aprendizado de máquina Previsão de séries temporais Gradient boosting Prophet - Método Cosméticos no varejo Time Series Forecasting Machine Learning Gradient Boosting Prophet Retail CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| title_short |
Previsão de demanda de cosméticos no varejo utilizando aprendizagem de máquina |
| title_full |
Previsão de demanda de cosméticos no varejo utilizando aprendizagem de máquina |
| title_fullStr |
Previsão de demanda de cosméticos no varejo utilizando aprendizagem de máquina |
| title_full_unstemmed |
Previsão de demanda de cosméticos no varejo utilizando aprendizagem de máquina |
| title_sort |
Previsão de demanda de cosméticos no varejo utilizando aprendizagem de máquina |
| author |
Sousa, Ana Clara Chaves |
| author_facet |
Sousa, Ana Clara Chaves |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Rêgo, Thaís Gaudencio do http://lattes.cnpq.br/3166390632199101 Barbosa, Yuri de Almeida Malheiros http://lattes.cnpq.br/6396235096236217 |
| dc.contributor.author.fl_str_mv |
Sousa, Ana Clara Chaves |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina Previsão de séries temporais Gradient boosting Prophet - Método Cosméticos no varejo Time Series Forecasting Machine Learning Gradient Boosting Prophet Retail CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| topic |
Aprendizado de máquina Previsão de séries temporais Gradient boosting Prophet - Método Cosméticos no varejo Time Series Forecasting Machine Learning Gradient Boosting Prophet Retail CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
| description |
Data-driven decision making was facilitated due to the high availability of data and the greater processing power of computers. To assist in decision making, it is possible to extract information from data through Data Science. An example in which there is great applicability of this science in companies is demand forecasting within the Supply Chain Management area. Forecasting sales volume is not a trivial task and inaccuracies in this forecast can cause stock-outs or affect its management. In this study, sales forecasts will be made for two different sales channels using Machine Learning algorithms for a brand owned by a large company. This company is in the Cosmetics, Fragrances and Toiletries market, where Brazil is the fourth largest consumer market in the world. Data was used from the years 2018 to 2023 on sales in all Brazilian states. Forecasts were made for three different time horizons: short term (next period), medium term (approximately 3 months ahead) and long term (approximately 7 months ahead). The short term refers to the next cycle for the regression methods and the next week for the time series method, the medium term refers to 5 cycles ahead for the regression methods and 15 weeks ahead for the time series method and the long term refers to the forecast of 10 cycles ahead for the regression methods and 30 weeks ahead for the time series method. Therefore, the consistency of the Machine Learning models was also evaluated. The algorithms analyzed in this study were CatBoost, LightGBM, XGBoost and Prophet. Firstly, the aforementioned Gradient Boosting methods were compared in order to identify which of the three methods showed the greatest stability when predicting multiple horizons. XGBoost had the lowest forecast errors for the Store channel in all three horizons (10% for the short term, 2.12% for the medium term and 6.4% for the long term). For the Direct Sales channel, XGBoost didn’t have the lowest WAPE in all horizons, but it was more stable compared to CatBoost and LightGBM. Next, XGBoost was compared with a time series method, Prophet. Comparing the two models in different scenarios, it was concluded that Prophet showed more satisfactory results and more stability in forecasting multiple time horizons. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-11-11T17:32:38Z 2024-04-27 2024-11-11T17:32:38Z 2024-02-28 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/32390 |
| url |
https://repositorio.ufpb.br/jspui/handle/123456789/32390 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Informática Programa de Pós-Graduação em Informática UFPB |
| publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Informática Programa de Pós-Graduação em Informática UFPB |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
| instname_str |
Universidade Federal da Paraíba (UFPB) |
| instacron_str |
UFPB |
| institution |
UFPB |
| reponame_str |
Repositório Institucional da UFPB |
| collection |
Repositório Institucional da UFPB |
| repository.name.fl_str_mv |
Repositório Institucional da UFPB - Universidade Federal da Paraíba (UFPB) |
| repository.mail.fl_str_mv |
diretoria@ufpb.br||bdtd@biblioteca.ufpb.br |
| _version_ |
1833923276458426368 |