Produção de fibras de carbono por solution blow spinning usando poliacrilonitrila (PAN) como precursor

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Lopes, Caio Matheus de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Engenharia de Materiais
Programa de Pós-Graduação em Ciência e Engenharia de Materiais
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
SBS
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/33431
Resumo: Industrially, using polyacrylonitrile (PAN) as a precursor for carbon fiber production is the most common method, and the process of obtaining it typically involves either melt spinning or solution spinning. However, concerning the production of micrometer-sized fibers, other methods stand out, such as electrospinning, which involves applying a potential difference between the solution and the target, causing the solvent to evaporate and form fibers. Another emerging technique is solution blow spinning (SBS), which enables the production of carbon fibers with higher productivity, smaller fiber diameters, and greater flexibility in solvent selection. In this study, SBS was employed to produce carbon fibers using PAN as the polymer matrix and polyvinylpyrrolidone (PVP) as a roughness agent on the fiber surface, at concentrations of 0, 2.5, 5, and 10% relative to the PAN mass. The polymer injection rate was 3 ml/hr, compressed air pressure was 20 Psi, working distance was 20 cm, and collector rotation speed was 600 rpm. After spinning, the fibers underwent two annealing curves in a muffle furnace, first from room temperature to 100 °C, and then to 260 °C, both at a rate of 3 °C/min with a 2-hour hold. Subsequently, they were carbonized in a nitrogen atmosphere at a rate of 5 °C/min from room temperature to 1000 °C, where they remained for 2 hours. The obtained carbon fibers were characterized by morphological, structural, and elemental analyses to better understand their behavior. Scanning electron microscopy (SEM) analysis confirmed fiber formation and the maintenance of the fibrous structure even after carbonization. Using Raman spectroscopy, the values of the D band (disorder) and G band (graphitic) were obtained, from which the ID/IG ratio was calculated to determine the R factor (ID/IG), indicating an increase in graphitization with the addition of PVP. Increasing PVP content resulted in a decrease in the ID/IG ratio (0.9518, 0.9464, 0.9143, 0.8897), indicating greater structural regularity with increasing PVP content. Elemental CHN analysis confirmed the presence of carbon and nitrogen even after carbonization, and Fourier-transform infrared (FTIR) spectroscopy revealed fiber cyclization due to the appearance of the peak at 2115 cm-1, corresponding to the isocyanate group, and the absence of the peak at 2249 cm-1 corresponding to the C≡N group. However, carbon fibers were successfully obtained using the SBS technique, employing PAN as a precursor and PVP as a roughness agent on the fiber surface in a nitrogen atmosphere.
id UFPB-2_ed0be6db39594ddc00f0ac98d0ebf99f
oai_identifier_str oai:repositorio.ufpb.br:123456789/33431
network_acronym_str UFPB-2
network_name_str Repositório Institucional da UFPB
repository_id_str
spelling Produção de fibras de carbono por solution blow spinning usando poliacrilonitrila (PAN) como precursorPoliacrilonitrilaNanofibrasFibra de carbonoSBSNanofibersSolution blow spinningCarbon fiberPolyacrylonitrileCNPQ::ENGENHARIASIndustrially, using polyacrylonitrile (PAN) as a precursor for carbon fiber production is the most common method, and the process of obtaining it typically involves either melt spinning or solution spinning. However, concerning the production of micrometer-sized fibers, other methods stand out, such as electrospinning, which involves applying a potential difference between the solution and the target, causing the solvent to evaporate and form fibers. Another emerging technique is solution blow spinning (SBS), which enables the production of carbon fibers with higher productivity, smaller fiber diameters, and greater flexibility in solvent selection. In this study, SBS was employed to produce carbon fibers using PAN as the polymer matrix and polyvinylpyrrolidone (PVP) as a roughness agent on the fiber surface, at concentrations of 0, 2.5, 5, and 10% relative to the PAN mass. The polymer injection rate was 3 ml/hr, compressed air pressure was 20 Psi, working distance was 20 cm, and collector rotation speed was 600 rpm. After spinning, the fibers underwent two annealing curves in a muffle furnace, first from room temperature to 100 °C, and then to 260 °C, both at a rate of 3 °C/min with a 2-hour hold. Subsequently, they were carbonized in a nitrogen atmosphere at a rate of 5 °C/min from room temperature to 1000 °C, where they remained for 2 hours. The obtained carbon fibers were characterized by morphological, structural, and elemental analyses to better understand their behavior. Scanning electron microscopy (SEM) analysis confirmed fiber formation and the maintenance of the fibrous structure even after carbonization. Using Raman spectroscopy, the values of the D band (disorder) and G band (graphitic) were obtained, from which the ID/IG ratio was calculated to determine the R factor (ID/IG), indicating an increase in graphitization with the addition of PVP. Increasing PVP content resulted in a decrease in the ID/IG ratio (0.9518, 0.9464, 0.9143, 0.8897), indicating greater structural regularity with increasing PVP content. Elemental CHN analysis confirmed the presence of carbon and nitrogen even after carbonization, and Fourier-transform infrared (FTIR) spectroscopy revealed fiber cyclization due to the appearance of the peak at 2115 cm-1, corresponding to the isocyanate group, and the absence of the peak at 2249 cm-1 corresponding to the C≡N group. However, carbon fibers were successfully obtained using the SBS technique, employing PAN as a precursor and PVP as a roughness agent on the fiber surface in a nitrogen atmosphere.NenhumaIndustrialmente, utilizar a poliacrilonitrila (PAN) como precursor para a produção de fibra de carbono é o método mais comum e o processo de obtenção geralmente é a fiação a partir do fundido (melt spinning) ou a partir da solução (solution spinning). No entanto, no que tange a produção de fibras micrométricas se destacam outras formas de se produzir fibras de carbono como a eletrofiação, que consiste na aplicação de uma diferença de potencial entre a solução e o alvo, nela o solvente evapora e dá origem as fibras. Além dessa técnica, outra que está em ascensão é a fiação por sopro em solução (solution blow spinning – SBS). Com ela é possível produzir fibras de carbono com maior produtividade, obtenção de diâmetros menores de fibras e alta flexibilidade nos tipos de solventes. Neste trabalho, o SBS foi empregado para produção de fibras de carbono utilizando PAN como matriz polimérica e a polivinilpirrolidona (PVP) como agente formador de rugosidade na superfície das fibras, nos teores de 0, 2.5 ,5 e 10 % em relação a massa da PAN. A taxa de injeção do polímero foi de 3 ml/hr, a pressão do ar comprimido de 20 Psi, distância de trabalho de 20 cm e velocidade de rotação do coletor de 600 rpm. Após fiação, as fibras foram submetidas a duas curvas em mufla, a primeira da temperatura ambiente até 100 °C e a segunda até 260 °C, ambas numa taxa de 3 °C/min e 2 h de patamar. Na sequência passaram por carbonização em atmosfera de nitrogênio numa taxa de 5 °C/min da temperatura ambiente até 1000 °C onde permaneceu por 2 h. As fibras de carbono obtidas foram caracterizadas por análises morfológica, estrutural e elementar para melhor compreensão do comportamento das fibras. Com a análise de microscopia eletrônica de varredura (MEV) foi possível comprovar a formação das fibras e a manutenção dessa estrutura fibrosa mesmo após a carbonização. Com base na técnica de espectroscopia RAMAN é possível obter os valores da banda D (desordem) e da banda G (grafítica) onde a partir da relação ID/IG foi possível calcular o fator R (ID/IG) que indicou um aumento da grafitização com a adição do PVP. O aumento do teor de PVP provoca uma diminuição na relação ID/IG (0,9518; 0,9464; 0,9143; 0,8897) indicando que há maior regularidade na estrutura com o aumento do teor de PVP. A análise elementar de CHN comprovou a existência de carbono e nitrogênio mesmo após o processo de carbonização e pelo FTIR foi possível concluir que houve um processo de ciclização das fibras da PAN devido ao surgimento do pico em 2115 cm-1, referente ao grupo isocianato, e a não aparição do pico em 2249 cm-1 referente ao grupo ≡. Contudo, foi possível a obtenção de fibras de carbono pela técnica de SBS, usando PAN como precursor e PVP como agente formador de rugosidade na superfície das fibras em atmosfera de nitrogênio.Universidade Federal da ParaíbaBrasilEngenharia de MateriaisPrograma de Pós-Graduação em Ciência e Engenharia de MateriaisUFPBMedeiros, Eliton Souto dehttp://lattes.cnpq.br/7096228449228489Macedo, Daniel Araújo dehttp://lattes.cnpq.br/1027496814443777Lopes, Caio Matheus de Souza2025-02-10T12:15:38Z2024-05-022025-02-10T12:15:38Z2024-03-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/33431porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2025-02-11T06:03:58Zoai:repositorio.ufpb.br:123456789/33431Repositório InstitucionalPUBhttps://repositorio.ufpb.br/oai/requestdiretoria@ufpb.br||bdtd@biblioteca.ufpb.bropendoar:25462025-02-11T06:03:58Repositório Institucional da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Produção de fibras de carbono por solution blow spinning usando poliacrilonitrila (PAN) como precursor
title Produção de fibras de carbono por solution blow spinning usando poliacrilonitrila (PAN) como precursor
spellingShingle Produção de fibras de carbono por solution blow spinning usando poliacrilonitrila (PAN) como precursor
Lopes, Caio Matheus de Souza
Poliacrilonitrila
Nanofibras
Fibra de carbono
SBS
Nanofibers
Solution blow spinning
Carbon fiber
Polyacrylonitrile
CNPQ::ENGENHARIAS
title_short Produção de fibras de carbono por solution blow spinning usando poliacrilonitrila (PAN) como precursor
title_full Produção de fibras de carbono por solution blow spinning usando poliacrilonitrila (PAN) como precursor
title_fullStr Produção de fibras de carbono por solution blow spinning usando poliacrilonitrila (PAN) como precursor
title_full_unstemmed Produção de fibras de carbono por solution blow spinning usando poliacrilonitrila (PAN) como precursor
title_sort Produção de fibras de carbono por solution blow spinning usando poliacrilonitrila (PAN) como precursor
author Lopes, Caio Matheus de Souza
author_facet Lopes, Caio Matheus de Souza
author_role author
dc.contributor.none.fl_str_mv Medeiros, Eliton Souto de
http://lattes.cnpq.br/7096228449228489
Macedo, Daniel Araújo de
http://lattes.cnpq.br/1027496814443777
dc.contributor.author.fl_str_mv Lopes, Caio Matheus de Souza
dc.subject.por.fl_str_mv Poliacrilonitrila
Nanofibras
Fibra de carbono
SBS
Nanofibers
Solution blow spinning
Carbon fiber
Polyacrylonitrile
CNPQ::ENGENHARIAS
topic Poliacrilonitrila
Nanofibras
Fibra de carbono
SBS
Nanofibers
Solution blow spinning
Carbon fiber
Polyacrylonitrile
CNPQ::ENGENHARIAS
description Industrially, using polyacrylonitrile (PAN) as a precursor for carbon fiber production is the most common method, and the process of obtaining it typically involves either melt spinning or solution spinning. However, concerning the production of micrometer-sized fibers, other methods stand out, such as electrospinning, which involves applying a potential difference between the solution and the target, causing the solvent to evaporate and form fibers. Another emerging technique is solution blow spinning (SBS), which enables the production of carbon fibers with higher productivity, smaller fiber diameters, and greater flexibility in solvent selection. In this study, SBS was employed to produce carbon fibers using PAN as the polymer matrix and polyvinylpyrrolidone (PVP) as a roughness agent on the fiber surface, at concentrations of 0, 2.5, 5, and 10% relative to the PAN mass. The polymer injection rate was 3 ml/hr, compressed air pressure was 20 Psi, working distance was 20 cm, and collector rotation speed was 600 rpm. After spinning, the fibers underwent two annealing curves in a muffle furnace, first from room temperature to 100 °C, and then to 260 °C, both at a rate of 3 °C/min with a 2-hour hold. Subsequently, they were carbonized in a nitrogen atmosphere at a rate of 5 °C/min from room temperature to 1000 °C, where they remained for 2 hours. The obtained carbon fibers were characterized by morphological, structural, and elemental analyses to better understand their behavior. Scanning electron microscopy (SEM) analysis confirmed fiber formation and the maintenance of the fibrous structure even after carbonization. Using Raman spectroscopy, the values of the D band (disorder) and G band (graphitic) were obtained, from which the ID/IG ratio was calculated to determine the R factor (ID/IG), indicating an increase in graphitization with the addition of PVP. Increasing PVP content resulted in a decrease in the ID/IG ratio (0.9518, 0.9464, 0.9143, 0.8897), indicating greater structural regularity with increasing PVP content. Elemental CHN analysis confirmed the presence of carbon and nitrogen even after carbonization, and Fourier-transform infrared (FTIR) spectroscopy revealed fiber cyclization due to the appearance of the peak at 2115 cm-1, corresponding to the isocyanate group, and the absence of the peak at 2249 cm-1 corresponding to the C≡N group. However, carbon fibers were successfully obtained using the SBS technique, employing PAN as a precursor and PVP as a roughness agent on the fiber surface in a nitrogen atmosphere.
publishDate 2024
dc.date.none.fl_str_mv 2024-05-02
2024-03-05
2025-02-10T12:15:38Z
2025-02-10T12:15:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/33431
url https://repositorio.ufpb.br/jspui/handle/123456789/33431
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Engenharia de Materiais
Programa de Pós-Graduação em Ciência e Engenharia de Materiais
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Engenharia de Materiais
Programa de Pós-Graduação em Ciência e Engenharia de Materiais
UFPB
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Repositório Institucional da UFPB
collection Repositório Institucional da UFPB
repository.name.fl_str_mv Repositório Institucional da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br||bdtd@biblioteca.ufpb.br
_version_ 1833923280308797440