Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Freitas, Emerson da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Engenharia Civil e Ambiental
Programa de Pós-Graduação em Engenharia Civil e Ambiental
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/35869
Resumo: Precipitation is one of the main components of the hydrological cycle and its accurate quantification is essential to provide information for understanding and predicting physical processes. Occurrence observations based on ground-based devices (manual and automatic rain gauges) are highly accurate but have limited spatial coverage. On the other hand, remote sensing products cover large areas but with lower precision. In this context, this study aims to evaluate machine learning models to create a product with better occurrence estimation, with lower latency than other products and without directly relying on field data. The methodology consists of choosing the best machine learning model (classification and regression) and applying it to satellite-based remote sensing data (IMERG Early Run product) and reanalysis-based variables (MERRA-2). The method was applied throughout the Brazilian territory, on monthly and daily scales, which presents a wide variety of supply regimes. This methodology first resulted in the development of an adjusted IMERG product at the monthly scale (IMERG-BraMaL) and later an improved product at the daily scale with a multiple machine learning technique (IMERG-BraMMaL). Compared to the original IMERG products (Early Run and Final Run) and global estimation products (MSWEP, CHIRPS and PERSIANN-CDR), IMERG-BraMaL improved the analyses evaluated between terrestrial and satellite data in almost all analyses. For example, the KGE (Kling-Gupta Efficiency) went from lower values (0.70, 0.82, 0.09, 0.60 and 0.81 for IMERG Early, IMERG Final, PERSIANN, MSWEP and CHIRPS, respectively) to values above 0.86 in IMERG-BraMal at the monthly scale. On a daily scale, IMERG BraMMAL proved to be more efficient, presenting better results, with a CC of 0.79 compared to 0.68 for IMERG BraMaL. The main conclusions of the study were: (i) much faster availability to end users; (ii) no dependence on any field data, allowing its application in areas where rainfall data are not available or are of low quality; (iii) no correlation of errors with local characteristics; and (iv) much improved estimates in regions of Brazil where, historically, satellite-based products often underestimate the observed data.
id UFPB_4a5946eba61a344144a97b4bb3db220b
oai_identifier_str oai:repositorio.ufpb.br:123456789/35869
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniquesMelhoramento de produto de precipitação baseado em dados desatélites para o brasil por meio de técnicas de machine learning e deep learning aplicados a dados hidrometeorológicos de reanáliseAprendizado de máquinaPrecipitaçãoDados de reanáliseK-nearest neighboursSensoriamento remotoMachine learningPrecipitationRe-analysis dataRemote sensingCNPQ::ENGENHARIAS::ENGENHARIA CIVILPrecipitation is one of the main components of the hydrological cycle and its accurate quantification is essential to provide information for understanding and predicting physical processes. Occurrence observations based on ground-based devices (manual and automatic rain gauges) are highly accurate but have limited spatial coverage. On the other hand, remote sensing products cover large areas but with lower precision. In this context, this study aims to evaluate machine learning models to create a product with better occurrence estimation, with lower latency than other products and without directly relying on field data. The methodology consists of choosing the best machine learning model (classification and regression) and applying it to satellite-based remote sensing data (IMERG Early Run product) and reanalysis-based variables (MERRA-2). The method was applied throughout the Brazilian territory, on monthly and daily scales, which presents a wide variety of supply regimes. This methodology first resulted in the development of an adjusted IMERG product at the monthly scale (IMERG-BraMaL) and later an improved product at the daily scale with a multiple machine learning technique (IMERG-BraMMaL). Compared to the original IMERG products (Early Run and Final Run) and global estimation products (MSWEP, CHIRPS and PERSIANN-CDR), IMERG-BraMaL improved the analyses evaluated between terrestrial and satellite data in almost all analyses. For example, the KGE (Kling-Gupta Efficiency) went from lower values (0.70, 0.82, 0.09, 0.60 and 0.81 for IMERG Early, IMERG Final, PERSIANN, MSWEP and CHIRPS, respectively) to values above 0.86 in IMERG-BraMal at the monthly scale. On a daily scale, IMERG BraMMAL proved to be more efficient, presenting better results, with a CC of 0.79 compared to 0.68 for IMERG BraMaL. The main conclusions of the study were: (i) much faster availability to end users; (ii) no dependence on any field data, allowing its application in areas where rainfall data are not available or are of low quality; (iii) no correlation of errors with local characteristics; and (iv) much improved estimates in regions of Brazil where, historically, satellite-based products often underestimate the observed data.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA precipitação é um dos principais componentes do ciclo hidrológico e sua quantificação precisa é essencial para fornecer informações para a compreensão e previsão de processos físicos. As observações de ocorrência baseadas em dispositivos terrestres (pluviômetros manuais e automáticos) são altamente precisas, mas têm cobertura espacial limitada. Por outro lado, os produtos de sensoriamento remoto cobrem grandes áreas, mas com menor precisão. Neste contexto, este estudo tem como objetivo avaliar modelos de aprendizado de máquina para criar um produto com melhor estimativa de ocorrência, com menor latência que outros produtos e sem depender diretamente de dados de campo. A metodologia consiste em escolher o melhor modelo de aprendizado de máquina (classificação e regressão) e aplicá-lo a dados de sensoriamento remoto baseados em satélite (produto IMERG Early Run) e variáveis baseadas em reanálise (MERRA-2). O método foi aplicado em todo o território brasileiro, em escalas mensais e diárias, que apresenta uma grande variedade de regimes de abastecimento. Esta metodologia primeiramente resultou no desenvolvimento de um produto IMERG ajustado na escala mensal (IMERG-BraMaL) e posteriormente um produto melhorado na escala diária com uma técnina de múltiplos machine leraning (IMERG- BraMMaL). Comparado aos produtos originais do IMERG (Early Run e Final Run) e produtos de estimativas globais (MSWEP, CHIRPS e PERSIANN-CDR), o IMERG-BraMaL melhorou as análises avaliadas entre dados terrestres e de satélite em quase todas as análises. Por exemplo, o KGE (Eficiência Kling-Gupta) passou de valores mais baixos (0.70, 0.82, 0.09, 0.60 e 0.81 para IMERG Early, IMERG Final, PERSIANN, MSWEP e CHIRPS, respectivamente) para valores acima de 0.86 no IMERG-BraMal na escala mensal. Na escala diária, o IMERG BraMMAL se mostrou mais eficiente, apresentando melhores resultados, com CC de 0,79 comparado a 0,68 do IMERG BraMaL. As principais conclusões do estudo foram: (i) disponibilidade muito mais rápida para os usuários finais; (ii) não dependência de quaisquer dados de campo, permitindo sua aplicação em áreas onde os dados pluviométricos não estão disponíveis ou são de baixa qualidade; (iii) a não relação dos erros com as características locais; e (iv) estimativas muito melhoradas em regiões do Brasil onde, historicamente, os produtos baseados em satélites frequentemente subestimam os dados observados.Universidade Federal da ParaíbaBrasilEngenharia Civil e AmbientalPrograma de Pós-Graduação em Engenharia Civil e AmbientalUFPBAlmeida, Cristiano das NevesLattes não recuperado em 19/09/2025Coelho, Victor Hugo RabeloLattes não recuperado em 19/09/2025Freitas, Emerson da Silva2025-09-19T12:44:40Z2025-03-282025-09-19T12:44:40Z2024-09-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://repositorio.ufpb.br/jspui/handle/123456789/35869porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2025-09-20T06:06:17Zoai:repositorio.ufpb.br:123456789/35869Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| bdtd@biblioteca.ufpb.bropendoar:2025-09-20T06:06:17Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques
Melhoramento de produto de precipitação baseado em dados desatélites para o brasil por meio de técnicas de machine learning e deep learning aplicados a dados hidrometeorológicos de reanálise
title Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques
spellingShingle Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques
Freitas, Emerson da Silva
Aprendizado de máquina
Precipitação
Dados de reanálise
K-nearest neighbours
Sensoriamento remoto
Machine learning
Precipitation
Re-analysis data
Remote sensing
CNPQ::ENGENHARIAS::ENGENHARIA CIVIL
title_short Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques
title_full Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques
title_fullStr Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques
title_full_unstemmed Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques
title_sort Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques
author Freitas, Emerson da Silva
author_facet Freitas, Emerson da Silva
author_role author
dc.contributor.none.fl_str_mv Almeida, Cristiano das Neves
Lattes não recuperado em 19/09/2025
Coelho, Victor Hugo Rabelo
Lattes não recuperado em 19/09/2025
dc.contributor.author.fl_str_mv Freitas, Emerson da Silva
dc.subject.por.fl_str_mv Aprendizado de máquina
Precipitação
Dados de reanálise
K-nearest neighbours
Sensoriamento remoto
Machine learning
Precipitation
Re-analysis data
Remote sensing
CNPQ::ENGENHARIAS::ENGENHARIA CIVIL
topic Aprendizado de máquina
Precipitação
Dados de reanálise
K-nearest neighbours
Sensoriamento remoto
Machine learning
Precipitation
Re-analysis data
Remote sensing
CNPQ::ENGENHARIAS::ENGENHARIA CIVIL
description Precipitation is one of the main components of the hydrological cycle and its accurate quantification is essential to provide information for understanding and predicting physical processes. Occurrence observations based on ground-based devices (manual and automatic rain gauges) are highly accurate but have limited spatial coverage. On the other hand, remote sensing products cover large areas but with lower precision. In this context, this study aims to evaluate machine learning models to create a product with better occurrence estimation, with lower latency than other products and without directly relying on field data. The methodology consists of choosing the best machine learning model (classification and regression) and applying it to satellite-based remote sensing data (IMERG Early Run product) and reanalysis-based variables (MERRA-2). The method was applied throughout the Brazilian territory, on monthly and daily scales, which presents a wide variety of supply regimes. This methodology first resulted in the development of an adjusted IMERG product at the monthly scale (IMERG-BraMaL) and later an improved product at the daily scale with a multiple machine learning technique (IMERG-BraMMaL). Compared to the original IMERG products (Early Run and Final Run) and global estimation products (MSWEP, CHIRPS and PERSIANN-CDR), IMERG-BraMaL improved the analyses evaluated between terrestrial and satellite data in almost all analyses. For example, the KGE (Kling-Gupta Efficiency) went from lower values (0.70, 0.82, 0.09, 0.60 and 0.81 for IMERG Early, IMERG Final, PERSIANN, MSWEP and CHIRPS, respectively) to values above 0.86 in IMERG-BraMal at the monthly scale. On a daily scale, IMERG BraMMAL proved to be more efficient, presenting better results, with a CC of 0.79 compared to 0.68 for IMERG BraMaL. The main conclusions of the study were: (i) much faster availability to end users; (ii) no dependence on any field data, allowing its application in areas where rainfall data are not available or are of low quality; (iii) no correlation of errors with local characteristics; and (iv) much improved estimates in regions of Brazil where, historically, satellite-based products often underestimate the observed data.
publishDate 2024
dc.date.none.fl_str_mv 2024-09-27
2025-09-19T12:44:40Z
2025-03-28
2025-09-19T12:44:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/35869
url https://repositorio.ufpb.br/jspui/handle/123456789/35869
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Engenharia Civil e Ambiental
Programa de Pós-Graduação em Engenharia Civil e Ambiental
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Engenharia Civil e Ambiental
Programa de Pós-Graduação em Engenharia Civil e Ambiental
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| bdtd@biblioteca.ufpb.br
_version_ 1846251535078522880