Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Engenharia Civil e Ambiental Programa de Pós-Graduação em Engenharia Civil e Ambiental UFPB |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpb.br/jspui/handle/123456789/35869 |
Resumo: | Precipitation is one of the main components of the hydrological cycle and its accurate quantification is essential to provide information for understanding and predicting physical processes. Occurrence observations based on ground-based devices (manual and automatic rain gauges) are highly accurate but have limited spatial coverage. On the other hand, remote sensing products cover large areas but with lower precision. In this context, this study aims to evaluate machine learning models to create a product with better occurrence estimation, with lower latency than other products and without directly relying on field data. The methodology consists of choosing the best machine learning model (classification and regression) and applying it to satellite-based remote sensing data (IMERG Early Run product) and reanalysis-based variables (MERRA-2). The method was applied throughout the Brazilian territory, on monthly and daily scales, which presents a wide variety of supply regimes. This methodology first resulted in the development of an adjusted IMERG product at the monthly scale (IMERG-BraMaL) and later an improved product at the daily scale with a multiple machine learning technique (IMERG-BraMMaL). Compared to the original IMERG products (Early Run and Final Run) and global estimation products (MSWEP, CHIRPS and PERSIANN-CDR), IMERG-BraMaL improved the analyses evaluated between terrestrial and satellite data in almost all analyses. For example, the KGE (Kling-Gupta Efficiency) went from lower values (0.70, 0.82, 0.09, 0.60 and 0.81 for IMERG Early, IMERG Final, PERSIANN, MSWEP and CHIRPS, respectively) to values above 0.86 in IMERG-BraMal at the monthly scale. On a daily scale, IMERG BraMMAL proved to be more efficient, presenting better results, with a CC of 0.79 compared to 0.68 for IMERG BraMaL. The main conclusions of the study were: (i) much faster availability to end users; (ii) no dependence on any field data, allowing its application in areas where rainfall data are not available or are of low quality; (iii) no correlation of errors with local characteristics; and (iv) much improved estimates in regions of Brazil where, historically, satellite-based products often underestimate the observed data. |
| id |
UFPB_4a5946eba61a344144a97b4bb3db220b |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpb.br:123456789/35869 |
| network_acronym_str |
UFPB |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
| repository_id_str |
|
| spelling |
Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniquesMelhoramento de produto de precipitação baseado em dados desatélites para o brasil por meio de técnicas de machine learning e deep learning aplicados a dados hidrometeorológicos de reanáliseAprendizado de máquinaPrecipitaçãoDados de reanáliseK-nearest neighboursSensoriamento remotoMachine learningPrecipitationRe-analysis dataRemote sensingCNPQ::ENGENHARIAS::ENGENHARIA CIVILPrecipitation is one of the main components of the hydrological cycle and its accurate quantification is essential to provide information for understanding and predicting physical processes. Occurrence observations based on ground-based devices (manual and automatic rain gauges) are highly accurate but have limited spatial coverage. On the other hand, remote sensing products cover large areas but with lower precision. In this context, this study aims to evaluate machine learning models to create a product with better occurrence estimation, with lower latency than other products and without directly relying on field data. The methodology consists of choosing the best machine learning model (classification and regression) and applying it to satellite-based remote sensing data (IMERG Early Run product) and reanalysis-based variables (MERRA-2). The method was applied throughout the Brazilian territory, on monthly and daily scales, which presents a wide variety of supply regimes. This methodology first resulted in the development of an adjusted IMERG product at the monthly scale (IMERG-BraMaL) and later an improved product at the daily scale with a multiple machine learning technique (IMERG-BraMMaL). Compared to the original IMERG products (Early Run and Final Run) and global estimation products (MSWEP, CHIRPS and PERSIANN-CDR), IMERG-BraMaL improved the analyses evaluated between terrestrial and satellite data in almost all analyses. For example, the KGE (Kling-Gupta Efficiency) went from lower values (0.70, 0.82, 0.09, 0.60 and 0.81 for IMERG Early, IMERG Final, PERSIANN, MSWEP and CHIRPS, respectively) to values above 0.86 in IMERG-BraMal at the monthly scale. On a daily scale, IMERG BraMMAL proved to be more efficient, presenting better results, with a CC of 0.79 compared to 0.68 for IMERG BraMaL. The main conclusions of the study were: (i) much faster availability to end users; (ii) no dependence on any field data, allowing its application in areas where rainfall data are not available or are of low quality; (iii) no correlation of errors with local characteristics; and (iv) much improved estimates in regions of Brazil where, historically, satellite-based products often underestimate the observed data.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA precipitação é um dos principais componentes do ciclo hidrológico e sua quantificação precisa é essencial para fornecer informações para a compreensão e previsão de processos físicos. As observações de ocorrência baseadas em dispositivos terrestres (pluviômetros manuais e automáticos) são altamente precisas, mas têm cobertura espacial limitada. Por outro lado, os produtos de sensoriamento remoto cobrem grandes áreas, mas com menor precisão. Neste contexto, este estudo tem como objetivo avaliar modelos de aprendizado de máquina para criar um produto com melhor estimativa de ocorrência, com menor latência que outros produtos e sem depender diretamente de dados de campo. A metodologia consiste em escolher o melhor modelo de aprendizado de máquina (classificação e regressão) e aplicá-lo a dados de sensoriamento remoto baseados em satélite (produto IMERG Early Run) e variáveis baseadas em reanálise (MERRA-2). O método foi aplicado em todo o território brasileiro, em escalas mensais e diárias, que apresenta uma grande variedade de regimes de abastecimento. Esta metodologia primeiramente resultou no desenvolvimento de um produto IMERG ajustado na escala mensal (IMERG-BraMaL) e posteriormente um produto melhorado na escala diária com uma técnina de múltiplos machine leraning (IMERG- BraMMaL). Comparado aos produtos originais do IMERG (Early Run e Final Run) e produtos de estimativas globais (MSWEP, CHIRPS e PERSIANN-CDR), o IMERG-BraMaL melhorou as análises avaliadas entre dados terrestres e de satélite em quase todas as análises. Por exemplo, o KGE (Eficiência Kling-Gupta) passou de valores mais baixos (0.70, 0.82, 0.09, 0.60 e 0.81 para IMERG Early, IMERG Final, PERSIANN, MSWEP e CHIRPS, respectivamente) para valores acima de 0.86 no IMERG-BraMal na escala mensal. Na escala diária, o IMERG BraMMAL se mostrou mais eficiente, apresentando melhores resultados, com CC de 0,79 comparado a 0,68 do IMERG BraMaL. As principais conclusões do estudo foram: (i) disponibilidade muito mais rápida para os usuários finais; (ii) não dependência de quaisquer dados de campo, permitindo sua aplicação em áreas onde os dados pluviométricos não estão disponíveis ou são de baixa qualidade; (iii) a não relação dos erros com as características locais; e (iv) estimativas muito melhoradas em regiões do Brasil onde, historicamente, os produtos baseados em satélites frequentemente subestimam os dados observados.Universidade Federal da ParaíbaBrasilEngenharia Civil e AmbientalPrograma de Pós-Graduação em Engenharia Civil e AmbientalUFPBAlmeida, Cristiano das NevesLattes não recuperado em 19/09/2025Coelho, Victor Hugo RabeloLattes não recuperado em 19/09/2025Freitas, Emerson da Silva2025-09-19T12:44:40Z2025-03-282025-09-19T12:44:40Z2024-09-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://repositorio.ufpb.br/jspui/handle/123456789/35869porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2025-09-20T06:06:17Zoai:repositorio.ufpb.br:123456789/35869Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| bdtd@biblioteca.ufpb.bropendoar:2025-09-20T06:06:17Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
| dc.title.none.fl_str_mv |
Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques Melhoramento de produto de precipitação baseado em dados desatélites para o brasil por meio de técnicas de machine learning e deep learning aplicados a dados hidrometeorológicos de reanálise |
| title |
Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques |
| spellingShingle |
Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques Freitas, Emerson da Silva Aprendizado de máquina Precipitação Dados de reanálise K-nearest neighbours Sensoriamento remoto Machine learning Precipitation Re-analysis data Remote sensing CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
| title_short |
Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques |
| title_full |
Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques |
| title_fullStr |
Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques |
| title_full_unstemmed |
Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques |
| title_sort |
Improvement of precipitation estimation at monthly and daily scales for brazil based on remote sensing product and machine learning techniques |
| author |
Freitas, Emerson da Silva |
| author_facet |
Freitas, Emerson da Silva |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Almeida, Cristiano das Neves Lattes não recuperado em 19/09/2025 Coelho, Victor Hugo Rabelo Lattes não recuperado em 19/09/2025 |
| dc.contributor.author.fl_str_mv |
Freitas, Emerson da Silva |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina Precipitação Dados de reanálise K-nearest neighbours Sensoriamento remoto Machine learning Precipitation Re-analysis data Remote sensing CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
| topic |
Aprendizado de máquina Precipitação Dados de reanálise K-nearest neighbours Sensoriamento remoto Machine learning Precipitation Re-analysis data Remote sensing CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
| description |
Precipitation is one of the main components of the hydrological cycle and its accurate quantification is essential to provide information for understanding and predicting physical processes. Occurrence observations based on ground-based devices (manual and automatic rain gauges) are highly accurate but have limited spatial coverage. On the other hand, remote sensing products cover large areas but with lower precision. In this context, this study aims to evaluate machine learning models to create a product with better occurrence estimation, with lower latency than other products and without directly relying on field data. The methodology consists of choosing the best machine learning model (classification and regression) and applying it to satellite-based remote sensing data (IMERG Early Run product) and reanalysis-based variables (MERRA-2). The method was applied throughout the Brazilian territory, on monthly and daily scales, which presents a wide variety of supply regimes. This methodology first resulted in the development of an adjusted IMERG product at the monthly scale (IMERG-BraMaL) and later an improved product at the daily scale with a multiple machine learning technique (IMERG-BraMMaL). Compared to the original IMERG products (Early Run and Final Run) and global estimation products (MSWEP, CHIRPS and PERSIANN-CDR), IMERG-BraMaL improved the analyses evaluated between terrestrial and satellite data in almost all analyses. For example, the KGE (Kling-Gupta Efficiency) went from lower values (0.70, 0.82, 0.09, 0.60 and 0.81 for IMERG Early, IMERG Final, PERSIANN, MSWEP and CHIRPS, respectively) to values above 0.86 in IMERG-BraMal at the monthly scale. On a daily scale, IMERG BraMMAL proved to be more efficient, presenting better results, with a CC of 0.79 compared to 0.68 for IMERG BraMaL. The main conclusions of the study were: (i) much faster availability to end users; (ii) no dependence on any field data, allowing its application in areas where rainfall data are not available or are of low quality; (iii) no correlation of errors with local characteristics; and (iv) much improved estimates in regions of Brazil where, historically, satellite-based products often underestimate the observed data. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-09-27 2025-09-19T12:44:40Z 2025-03-28 2025-09-19T12:44:40Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufpb.br/jspui/handle/123456789/35869 |
| url |
https://repositorio.ufpb.br/jspui/handle/123456789/35869 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia Civil e Ambiental Programa de Pós-Graduação em Engenharia Civil e Ambiental UFPB |
| publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Engenharia Civil e Ambiental Programa de Pós-Graduação em Engenharia Civil e Ambiental UFPB |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
| instname_str |
Universidade Federal da Paraíba (UFPB) |
| instacron_str |
UFPB |
| institution |
UFPB |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
| collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
| repository.mail.fl_str_mv |
diretoria@ufpb.br|| bdtd@biblioteca.ufpb.br |
| _version_ |
1846251535078522880 |