Controle estatístico da qualidade em um processo de envase da indústria de alimentos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Rique Júnior, José Flávio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Engenharia de Produção
Programa de Pós-Graduação em Engenharia de Produção
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/20739
Resumo: Statistical Process Control (SCP) is an effective tool in helping to reduce variability and stabilize processes. SCP, with its benefits, can be an important ally to the food industry, which in turn suffers from the high variability of its processes. This high variability is due to several factors, for example, seasonality of the raw material and the high perishability of the products, so, due to this, the rate of defective items in the food industry can be high. The general objective of this work is to reduce the rate of defective sachet items in a food industry, through control charts, capability analysis, prioritization matrix and attribute agreement analysis. For this first, the measurement of the current state of the process was carried out, through the development of a method of implantation of the Statistical Process Control in the sector of filling of fruit pulp sachets, structured according to Phase I and Phase II of operations of control charts. This method was subdivided into 6 steps, problem statement, data collection plan and calculation of the initial control limits, stability analysis, capability analysis, online monitoring, and finally, the decision to end the process monitoring. Soon, data related to approximately 2 months of production were collected and analyzed. In Phase I, of control limit calculations, and stability and capability analysis, Special Causes of Variation (SC) were found, and corrections and preventions against recurrence were made. The Defects Per Million (DPM) index was obtained, corresponding to 21170 defective products for every 1 million produced, equivalent to a 2σ level process. In Phase II, the online monitoring phase, with the effective use of the control charts, and after correcting and preventing Special Causes (SC), the stability of the process was achieved. In view of the defect rate corresponding to 21170 defective sachets for every 1 million produced, a structured search for the causes of this high rate began, with meetings held with the specialists involved in the process to search for these possible causes. In the first meeting with the experts, a brainstorming was carried out, where each alleged cause was classified according to the 6M's of the Ishikawa diagram, with 36 possible causes being listed. Then, each specialist allocated each cause according to the rankings of a prioritization matrix. After allocations, the statistical tool, attribute agreement analysis was used to validate the classifications against a pre-established standard. Then, a filter was carried out based on the analysis of attribute agreement, through criteria of prioritization and elimination of causes, until 12 possible causes remain among the initial 36. With the 12 causes, the action plan was established and short and medium term goals were established for their solutions. With the fulfillment of the solutions for the causes established in the short term, it was possible to carry out the validation of the method by repeating the entire initial procedure, calculating new control limits and a new DPM equivalent to 14978 defective items for every 1 million produced. Compared to the initial one, after the implementation of the method, there was a 30% reduction in defective items.
id UFPB_6b72455d3d3aabb6ef5c3c10ed9bbd8c
oai_identifier_str oai:repositorio.ufpb.br:123456789/20739
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Controle estatístico da qualidade em um processo de envase da indústria de alimentosControle Estatístico do Processo (CEP)Cartas de ControleMatriz de PriorizaçãoAnálise de Concordância de AtributosStatistical Process Control (SCP)Control ChartsPrioritization MatrixAttribute Agreement AnalysisCNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAOStatistical Process Control (SCP) is an effective tool in helping to reduce variability and stabilize processes. SCP, with its benefits, can be an important ally to the food industry, which in turn suffers from the high variability of its processes. This high variability is due to several factors, for example, seasonality of the raw material and the high perishability of the products, so, due to this, the rate of defective items in the food industry can be high. The general objective of this work is to reduce the rate of defective sachet items in a food industry, through control charts, capability analysis, prioritization matrix and attribute agreement analysis. For this first, the measurement of the current state of the process was carried out, through the development of a method of implantation of the Statistical Process Control in the sector of filling of fruit pulp sachets, structured according to Phase I and Phase II of operations of control charts. This method was subdivided into 6 steps, problem statement, data collection plan and calculation of the initial control limits, stability analysis, capability analysis, online monitoring, and finally, the decision to end the process monitoring. Soon, data related to approximately 2 months of production were collected and analyzed. In Phase I, of control limit calculations, and stability and capability analysis, Special Causes of Variation (SC) were found, and corrections and preventions against recurrence were made. The Defects Per Million (DPM) index was obtained, corresponding to 21170 defective products for every 1 million produced, equivalent to a 2σ level process. In Phase II, the online monitoring phase, with the effective use of the control charts, and after correcting and preventing Special Causes (SC), the stability of the process was achieved. In view of the defect rate corresponding to 21170 defective sachets for every 1 million produced, a structured search for the causes of this high rate began, with meetings held with the specialists involved in the process to search for these possible causes. In the first meeting with the experts, a brainstorming was carried out, where each alleged cause was classified according to the 6M's of the Ishikawa diagram, with 36 possible causes being listed. Then, each specialist allocated each cause according to the rankings of a prioritization matrix. After allocations, the statistical tool, attribute agreement analysis was used to validate the classifications against a pre-established standard. Then, a filter was carried out based on the analysis of attribute agreement, through criteria of prioritization and elimination of causes, until 12 possible causes remain among the initial 36. With the 12 causes, the action plan was established and short and medium term goals were established for their solutions. With the fulfillment of the solutions for the causes established in the short term, it was possible to carry out the validation of the method by repeating the entire initial procedure, calculating new control limits and a new DPM equivalent to 14978 defective items for every 1 million produced. Compared to the initial one, after the implementation of the method, there was a 30% reduction in defective items.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO Controle Estatístico do Processo (CEP) é uma ferramenta efetiva no auxílio da redução da variabilidade e estabilização de processos. O CEP, com seus benefícios pode ser um importante aliado a indústria de alimentos, que por sua vez sofre com a alta variabilidade de seus processos. Essa alta variabilidade, se deve a diversos fatores, como por exemplo, sazonalidade da matéria prima e a alta perecibilidade dos produtos. Neste sentido, a taxa de itens defeituosos na indústria de alimentos pode ser elevada. O objetivo geral deste trabalho é reduzir a taxa de itens defeituosos de sachês em uma indústria de alimentos, através das cartas de controle por atributos, análise de capabilidade, matriz de priorização e análise de concordância de atributos. Para isso primeiro foi realizado a medição do estado atual do processo, através do desenvolvimento de um método de implantação do Controle Estatístico do Processo no setor de envase de sachês de polpas de frutas, estruturado de acordo com a Fase I e a Fase II de operações de cartas de controle. Este método foi subdivido em 6 etapas, declaração do problema, plano de coleta de dados e cálculo dos limites de controle iniciais, análise da estabilidade, análise da capabilidade, monitoramento online, e por fim, a decisão pelo fim do monitoramento do processo. Logo, foram coletados e analisados dados referentes a aproximadamente 2 meses de produção. Na Fase I, de cálculos de limites de controle, e análise de estabilidade e capabilidade, foram encontradas causas especiais de variação (CE), e feita as correções e prevenções contra recorrência. Obteve-se o índice Defeitos Por Milhão (DPM) correspondente a 21170 produtos defeituosos a cada 1 milhão produzidos, equivalente a um processo de nível 2σ. Na Fase II, a fase de monitoramento online, com o efetivo uso das cartas de controle, e após as correções e prevenções das causas especiais (CE), foi alcançado a estabilidade do processo. Diante da taxa de defeitos correspondente a 21170 sachês defeituosos a cada 1 milhão produzidos, iniciou-se uma busca estruturada pelas causas dessa elevada taxa, sendo realizadas reuniões com os especialistas envolvidos no processo. Na primeira reunião com os especialistas foi realizado um brainstorming, onde cada suposta causa foi classificada de acordo com os 6M ́s do diagrama de Ishikawa, sendo elencadas 36 possíveis causas. Em seguida cada especialista alocou cada causa de acordo com as classificações de uma matriz de priorização. Após as alocações, foi utilizada a ferramenta estatística, análise de concordância de atributos para validar as classificações em relação a um padrão pré-estabelecido. Então foi realizado um filtro a partir da análise de concordância de atributos, através de critérios de priorização e eliminação de causas, até sobrarem 12 causas possíveis dentre as 36 iniciais. Com as 12 causas foi realizado o plano de ação e estabelecido metas de curto e médio prazo para suas soluções. Com o cumprimento das soluções das causas estabelecidas a curto prazo, foi possível realizar a validação do método repetindo todo procedimento inicial, calculando novos limites de controle e um novo DPM equivalente a 14978 itens defeituosos a cada 1 milhão produzidos. Em comparação com o inicial, após a implementação do método, houve uma redução de 30% dos itens defeituosos.Universidade Federal da ParaíbaBrasilEngenharia de ProduçãoPrograma de Pós-Graduação em Engenharia de ProduçãoUFPBPeruchi, Rogério Santanahttp://lattes.cnpq.br/2633968496533807Rique Júnior, José Flávio2021-08-16T15:02:50Z2021-08-052021-08-16T15:02:50Z2020-05-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://repositorio.ufpb.br/jspui/handle/123456789/20739porhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2022-08-10T10:50:22Zoai:repositorio.ufpb.br:123456789/20739Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| bdtd@biblioteca.ufpb.bropendoar:2022-08-10T10:50:22Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Controle estatístico da qualidade em um processo de envase da indústria de alimentos
title Controle estatístico da qualidade em um processo de envase da indústria de alimentos
spellingShingle Controle estatístico da qualidade em um processo de envase da indústria de alimentos
Rique Júnior, José Flávio
Controle Estatístico do Processo (CEP)
Cartas de Controle
Matriz de Priorização
Análise de Concordância de Atributos
Statistical Process Control (SCP)
Control Charts
Prioritization Matrix
Attribute Agreement Analysis
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
title_short Controle estatístico da qualidade em um processo de envase da indústria de alimentos
title_full Controle estatístico da qualidade em um processo de envase da indústria de alimentos
title_fullStr Controle estatístico da qualidade em um processo de envase da indústria de alimentos
title_full_unstemmed Controle estatístico da qualidade em um processo de envase da indústria de alimentos
title_sort Controle estatístico da qualidade em um processo de envase da indústria de alimentos
author Rique Júnior, José Flávio
author_facet Rique Júnior, José Flávio
author_role author
dc.contributor.none.fl_str_mv Peruchi, Rogério Santana
http://lattes.cnpq.br/2633968496533807
dc.contributor.author.fl_str_mv Rique Júnior, José Flávio
dc.subject.por.fl_str_mv Controle Estatístico do Processo (CEP)
Cartas de Controle
Matriz de Priorização
Análise de Concordância de Atributos
Statistical Process Control (SCP)
Control Charts
Prioritization Matrix
Attribute Agreement Analysis
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
topic Controle Estatístico do Processo (CEP)
Cartas de Controle
Matriz de Priorização
Análise de Concordância de Atributos
Statistical Process Control (SCP)
Control Charts
Prioritization Matrix
Attribute Agreement Analysis
CNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAO
description Statistical Process Control (SCP) is an effective tool in helping to reduce variability and stabilize processes. SCP, with its benefits, can be an important ally to the food industry, which in turn suffers from the high variability of its processes. This high variability is due to several factors, for example, seasonality of the raw material and the high perishability of the products, so, due to this, the rate of defective items in the food industry can be high. The general objective of this work is to reduce the rate of defective sachet items in a food industry, through control charts, capability analysis, prioritization matrix and attribute agreement analysis. For this first, the measurement of the current state of the process was carried out, through the development of a method of implantation of the Statistical Process Control in the sector of filling of fruit pulp sachets, structured according to Phase I and Phase II of operations of control charts. This method was subdivided into 6 steps, problem statement, data collection plan and calculation of the initial control limits, stability analysis, capability analysis, online monitoring, and finally, the decision to end the process monitoring. Soon, data related to approximately 2 months of production were collected and analyzed. In Phase I, of control limit calculations, and stability and capability analysis, Special Causes of Variation (SC) were found, and corrections and preventions against recurrence were made. The Defects Per Million (DPM) index was obtained, corresponding to 21170 defective products for every 1 million produced, equivalent to a 2σ level process. In Phase II, the online monitoring phase, with the effective use of the control charts, and after correcting and preventing Special Causes (SC), the stability of the process was achieved. In view of the defect rate corresponding to 21170 defective sachets for every 1 million produced, a structured search for the causes of this high rate began, with meetings held with the specialists involved in the process to search for these possible causes. In the first meeting with the experts, a brainstorming was carried out, where each alleged cause was classified according to the 6M's of the Ishikawa diagram, with 36 possible causes being listed. Then, each specialist allocated each cause according to the rankings of a prioritization matrix. After allocations, the statistical tool, attribute agreement analysis was used to validate the classifications against a pre-established standard. Then, a filter was carried out based on the analysis of attribute agreement, through criteria of prioritization and elimination of causes, until 12 possible causes remain among the initial 36. With the 12 causes, the action plan was established and short and medium term goals were established for their solutions. With the fulfillment of the solutions for the causes established in the short term, it was possible to carry out the validation of the method by repeating the entire initial procedure, calculating new control limits and a new DPM equivalent to 14978 defective items for every 1 million produced. Compared to the initial one, after the implementation of the method, there was a 30% reduction in defective items.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-28
2021-08-16T15:02:50Z
2021-08-05
2021-08-16T15:02:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/20739
url https://repositorio.ufpb.br/jspui/handle/123456789/20739
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Engenharia de Produção
Programa de Pós-Graduação em Engenharia de Produção
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Engenharia de Produção
Programa de Pós-Graduação em Engenharia de Produção
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| bdtd@biblioteca.ufpb.br
_version_ 1831315322384154624