Some classical inequalities, summability of multilinear operators and strange functions
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal da Paraíba
Brasil Matemática Programa Associado de Pós-Graduação em Matemática UFPB |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpb.br/jspui/handle/tede/9310 |
Resumo: | This work is divided into three parts. In the first part, we investigate the behavior of the constants of the Bohnenblust–Hille and Hardy–Littlewood polynomial and multilinear inequalities. In the second part, we show an optimal spaceability result for a set of non-multiple summing forms on `p and we also generalize a result related to cotype (from 2010) as highlighted by G. Botelho, C. Michels, and D. Pellegrino. Moreover, we prove new coincidence results for the class of absolutely and multiple summing multilinear operators (in particular, we show that the well-known Defant–Voigt theorem is optimal). Still in the second part, we show a generalization of the Bohnenblust–Hille and Hardy–Littlewood multilinear inequalities and we present a new class of summing multilinear operators, which recovers the class of absolutely and multiple summing operators. In the third part, it is proved the existence of large algebraic structures inside, among others, the family of Lebesgue measurable functions that are surjective in a strong sense, the family of non-constant di↵erentiable real functions vanishing on dense sets, and the family of noncontinuous separately continuous real functions. |
| id |
UFPB_c36cf8ad8bc2bd71ac4a9c56d909481c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpb.br:tede/9310 |
| network_acronym_str |
UFPB |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
| repository_id_str |
|
| spelling |
Some classical inequalities, summability of multilinear operators and strange functionsDesigualdade de Bohnenblust–HilleDesigualdade de Hardy–LittlewoodFunção contínuaFunção diferenciávelFnção mensurávelLineabilidadeOperadores multilineares somantesBohnenblust–Hille InequalityContinuous functionDifferentiable functionHardy–Littlewood InequalityLineabilityMeasurable functionSumming multilinear operatorsCIENCIAS EXATAS E DA TERRA::MATEMATICAThis work is divided into three parts. In the first part, we investigate the behavior of the constants of the Bohnenblust–Hille and Hardy–Littlewood polynomial and multilinear inequalities. In the second part, we show an optimal spaceability result for a set of non-multiple summing forms on `p and we also generalize a result related to cotype (from 2010) as highlighted by G. Botelho, C. Michels, and D. Pellegrino. Moreover, we prove new coincidence results for the class of absolutely and multiple summing multilinear operators (in particular, we show that the well-known Defant–Voigt theorem is optimal). Still in the second part, we show a generalization of the Bohnenblust–Hille and Hardy–Littlewood multilinear inequalities and we present a new class of summing multilinear operators, which recovers the class of absolutely and multiple summing operators. In the third part, it is proved the existence of large algebraic structures inside, among others, the family of Lebesgue measurable functions that are surjective in a strong sense, the family of non-constant di↵erentiable real functions vanishing on dense sets, and the family of noncontinuous separately continuous real functions.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESEste trabalho est´a dividido em trˆes partes. Na primeira parte, investigamos o comportamento das constantes das desigualdades polinomial e multilinear de Bohnenblust–Hille e Hardy–Littlewood. Na segunda parte, mostramos um resultado ´otimo de espa¸cabilidade para o complementar de uma classe de operadores m´ultiplo somantes em `p e tamb´em generalizamos um resultado relacionado a cotipo (de 2010) devido a G. Botelho, C. Michels e D. Pellegrino. Al´em disso, provamos novos resultados de coincidˆencia para as classes de operadores multilineares absolutamente e m´ultiplo somantes (em particular, mostramos que o famoso teorema de Defant–Voigt ´e ´otimo). Ainda na segunda parte, mostramos uma generaliza¸c˜ao das desigualdades multilineares de Bohnenblust–Hille e Hardy–Littlewood e apresentamos uma nova classe de operadores multilineares somantes, a qual recupera as classes dos operadores multilineares absolutamente e m´ultiplo somantes. Na terceira parte, provamos a existˆencia de grandes estruturas alg´ebricas dentro de certos conjuntos, como, por exemplo, a fam´ılia das fun¸c˜oes mensur´aveis `a Lebesgue que s˜ao sobrejetivas em um sentido forte, a fam´ılia das fun¸c˜oes reais n˜ao constantes e diferenci´aveis que se anulam em um conjunto denso e a fam´ılia das fun¸c˜oes reais n˜ao cont´ınuas e separadamente cont´ınuas.Universidade Federal da ParaíbaBrasilMatemáticaPrograma Associado de Pós-Graduação em MatemáticaUFPBPellegrino, Daniel Marinhohttp://lattes.cnpq.br/1077711232112285Segado, Maria Pilar RuedaSepúlveda, Juan Benigno Seoanehttp://lattes.cnpq.br/1314302564435364Araújo, Gustavo da Silva2017-08-23T16:38:50Z2018-07-21T00:37:02Z2018-07-21T00:37:02Z2016-03-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfARAÚJO, Gustavo da Silva. Some classical inequalities, summability of multilinear operators and strange functions. 2016. 118 f. Tese (Doutorado em Matemática)- Universidade Federal da Paraíba, João Pessoa, 2016.https://repositorio.ufpb.br/jspui/handle/tede/9310porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2018-09-06T02:31:55Zoai:repositorio.ufpb.br:tede/9310Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| bdtd@biblioteca.ufpb.bropendoar:2018-09-06T02:31:55Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false |
| dc.title.none.fl_str_mv |
Some classical inequalities, summability of multilinear operators and strange functions |
| title |
Some classical inequalities, summability of multilinear operators and strange functions |
| spellingShingle |
Some classical inequalities, summability of multilinear operators and strange functions Araújo, Gustavo da Silva Desigualdade de Bohnenblust–Hille Desigualdade de Hardy–Littlewood Função contínua Função diferenciável Fnção mensurável Lineabilidade Operadores multilineares somantes Bohnenblust–Hille Inequality Continuous function Differentiable function Hardy–Littlewood Inequality Lineability Measurable function Summing multilinear operators CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Some classical inequalities, summability of multilinear operators and strange functions |
| title_full |
Some classical inequalities, summability of multilinear operators and strange functions |
| title_fullStr |
Some classical inequalities, summability of multilinear operators and strange functions |
| title_full_unstemmed |
Some classical inequalities, summability of multilinear operators and strange functions |
| title_sort |
Some classical inequalities, summability of multilinear operators and strange functions |
| author |
Araújo, Gustavo da Silva |
| author_facet |
Araújo, Gustavo da Silva |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Pellegrino, Daniel Marinho http://lattes.cnpq.br/1077711232112285 Segado, Maria Pilar Rueda Sepúlveda, Juan Benigno Seoane http://lattes.cnpq.br/1314302564435364 |
| dc.contributor.author.fl_str_mv |
Araújo, Gustavo da Silva |
| dc.subject.por.fl_str_mv |
Desigualdade de Bohnenblust–Hille Desigualdade de Hardy–Littlewood Função contínua Função diferenciável Fnção mensurável Lineabilidade Operadores multilineares somantes Bohnenblust–Hille Inequality Continuous function Differentiable function Hardy–Littlewood Inequality Lineability Measurable function Summing multilinear operators CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| topic |
Desigualdade de Bohnenblust–Hille Desigualdade de Hardy–Littlewood Função contínua Função diferenciável Fnção mensurável Lineabilidade Operadores multilineares somantes Bohnenblust–Hille Inequality Continuous function Differentiable function Hardy–Littlewood Inequality Lineability Measurable function Summing multilinear operators CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
This work is divided into three parts. In the first part, we investigate the behavior of the constants of the Bohnenblust–Hille and Hardy–Littlewood polynomial and multilinear inequalities. In the second part, we show an optimal spaceability result for a set of non-multiple summing forms on `p and we also generalize a result related to cotype (from 2010) as highlighted by G. Botelho, C. Michels, and D. Pellegrino. Moreover, we prove new coincidence results for the class of absolutely and multiple summing multilinear operators (in particular, we show that the well-known Defant–Voigt theorem is optimal). Still in the second part, we show a generalization of the Bohnenblust–Hille and Hardy–Littlewood multilinear inequalities and we present a new class of summing multilinear operators, which recovers the class of absolutely and multiple summing operators. In the third part, it is proved the existence of large algebraic structures inside, among others, the family of Lebesgue measurable functions that are surjective in a strong sense, the family of non-constant di↵erentiable real functions vanishing on dense sets, and the family of noncontinuous separately continuous real functions. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-03-08 2017-08-23T16:38:50Z 2018-07-21T00:37:02Z 2018-07-21T00:37:02Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
ARAÚJO, Gustavo da Silva. Some classical inequalities, summability of multilinear operators and strange functions. 2016. 118 f. Tese (Doutorado em Matemática)- Universidade Federal da Paraíba, João Pessoa, 2016. https://repositorio.ufpb.br/jspui/handle/tede/9310 |
| identifier_str_mv |
ARAÚJO, Gustavo da Silva. Some classical inequalities, summability of multilinear operators and strange functions. 2016. 118 f. Tese (Doutorado em Matemática)- Universidade Federal da Paraíba, João Pessoa, 2016. |
| url |
https://repositorio.ufpb.br/jspui/handle/tede/9310 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Matemática Programa Associado de Pós-Graduação em Matemática UFPB |
| publisher.none.fl_str_mv |
Universidade Federal da Paraíba Brasil Matemática Programa Associado de Pós-Graduação em Matemática UFPB |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFPB instname:Universidade Federal da Paraíba (UFPB) instacron:UFPB |
| instname_str |
Universidade Federal da Paraíba (UFPB) |
| instacron_str |
UFPB |
| institution |
UFPB |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFPB |
| collection |
Biblioteca Digital de Teses e Dissertações da UFPB |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB) |
| repository.mail.fl_str_mv |
diretoria@ufpb.br|| bdtd@biblioteca.ufpb.br |
| _version_ |
1831315284905951232 |