Análise do consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa, Paraíba

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Gomes, Nadjeanny Ingrid Galdino
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Ciências Exatas e da Saúde
Programa de Pós-Graduação em Modelos de Decisão e Saúde
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/35245
Resumo: Understanding eating behavior is essential to direct effective nutritional interventions, since it reflects the population's eating choices and practices, influenced by changes over the years. These changes contribute to the nutritional transition that affects eating patterns. However, socioeconomic factors directly impact these patterns, among low-income women, who face greater social vulnerability and difficulties in accessing quality food. Food insecurity, marked by concern, uncertainty, and deprivation of adequate food, affects millions of Brazilians, being more intense among families headed by women. In 2022, approximately 125.2 million people faced some degree of this problem, highlighting the need for public policies aimed at reducing inequalities and ensuring food security. The objective of this study was to analyze food consumption and the food insecurity situation of adult women users of the SUS in João Pessoa. This was a cross-sectional study nested in a prospective cohort, with 268 women aged 18 to 59 years recruited from 10 Basic Family Health Units for the analysis of food consumption, and 262 women for the assessment of food insecurity. Face-to-face interviews were conducted to characterize the sample, assess nutritional status, assess food consumption from 24-hour dietary recalls, assess food insecurity, assess state-trait anxiety inventory and the WHO quality of life questionnaire. Dietary patterns were identified by exploratory factor analysis, using principal components extraction, considering factors with eigenvalue greater than 1 and varimax rotation. Adherence to these patterns was assessed by means of comparison tests (T-Student and ANOVA), while the association with independent variables was analyzed by multiple logistic regression, with each factor dichotomized as a dependent variable. In addition, 14 machine learning models were applied to classify and identify associated factors. The best set of hyperparameters was selected based on the area under the ROC curve, in addition to the accuracy metrics, F-measure, precision, recall, specificity and Kappa coefficient. Four dietary patterns were identified: “Unhealthy”, “Mixed 1”, “Mixed 2” and “Traditional”, which explain 36% of the total variance of the sample. Being pregnant was associated with greater adherence to both the “Unhealthy” pattern (OR: 7.62; 95% CI: 3.59–16.19) and the “Traditional” pattern (OR: 6.00; 95% CI: 2.82–12.78). Being over 35 years old was associated with the “Traditional” pattern (OR: 2.10; 95%CI: 1.06–4.18) and low education level with the “Unhealthy” pattern (OR: 3.10; 95%CI: 1.18–8.12). The RDA model demonstrated good performance in classifying food insecurity, reaching 81% accuracy, that is, correctly classifying eight out of every 10 women. Its accuracy was 73%, indicating that, for every 10 women predicted to be food insecure, seven were correctly classified. Although income did not stand out directly among the most important variables, receipt of government benefits showed a direct relationship in the importance of the variables. Even so, the tendency to choose unhealthy foods among women of lower socioeconomic status should be considered in health strategies that promote nutritional education and access to healthy foods. In addition, greater adherence to the traditional pattern among older women suggests that the worsening of diet quality may be a recent phenomenon. Machine learning models demonstrated the ability to identify vulnerable populations, contributing to the promotion and prevention of food insecurity in an agile and effective manner. Among them, RDA presented the best performance when including sociodemographic and mental health factors.
id UFPB_c776993b7c3016bdf90bbc2f88917425
oai_identifier_str oai:repositorio.ufpb.br:123456789/35245
network_acronym_str UFPB
network_name_str Biblioteca Digital de Teses e Dissertações da UFPB
repository_id_str
spelling Análise do consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa, ParaíbaConsumo alimentar - MulheresPadrões alimentares - MulheresInsegurança alimentar - MulheresAprendizagem de máquina supervisionadoFood consumptionDietary patternsWomenFood insecuritySupervised Machine LearningCNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVAUnderstanding eating behavior is essential to direct effective nutritional interventions, since it reflects the population's eating choices and practices, influenced by changes over the years. These changes contribute to the nutritional transition that affects eating patterns. However, socioeconomic factors directly impact these patterns, among low-income women, who face greater social vulnerability and difficulties in accessing quality food. Food insecurity, marked by concern, uncertainty, and deprivation of adequate food, affects millions of Brazilians, being more intense among families headed by women. In 2022, approximately 125.2 million people faced some degree of this problem, highlighting the need for public policies aimed at reducing inequalities and ensuring food security. The objective of this study was to analyze food consumption and the food insecurity situation of adult women users of the SUS in João Pessoa. This was a cross-sectional study nested in a prospective cohort, with 268 women aged 18 to 59 years recruited from 10 Basic Family Health Units for the analysis of food consumption, and 262 women for the assessment of food insecurity. Face-to-face interviews were conducted to characterize the sample, assess nutritional status, assess food consumption from 24-hour dietary recalls, assess food insecurity, assess state-trait anxiety inventory and the WHO quality of life questionnaire. Dietary patterns were identified by exploratory factor analysis, using principal components extraction, considering factors with eigenvalue greater than 1 and varimax rotation. Adherence to these patterns was assessed by means of comparison tests (T-Student and ANOVA), while the association with independent variables was analyzed by multiple logistic regression, with each factor dichotomized as a dependent variable. In addition, 14 machine learning models were applied to classify and identify associated factors. The best set of hyperparameters was selected based on the area under the ROC curve, in addition to the accuracy metrics, F-measure, precision, recall, specificity and Kappa coefficient. Four dietary patterns were identified: “Unhealthy”, “Mixed 1”, “Mixed 2” and “Traditional”, which explain 36% of the total variance of the sample. Being pregnant was associated with greater adherence to both the “Unhealthy” pattern (OR: 7.62; 95% CI: 3.59–16.19) and the “Traditional” pattern (OR: 6.00; 95% CI: 2.82–12.78). Being over 35 years old was associated with the “Traditional” pattern (OR: 2.10; 95%CI: 1.06–4.18) and low education level with the “Unhealthy” pattern (OR: 3.10; 95%CI: 1.18–8.12). The RDA model demonstrated good performance in classifying food insecurity, reaching 81% accuracy, that is, correctly classifying eight out of every 10 women. Its accuracy was 73%, indicating that, for every 10 women predicted to be food insecure, seven were correctly classified. Although income did not stand out directly among the most important variables, receipt of government benefits showed a direct relationship in the importance of the variables. Even so, the tendency to choose unhealthy foods among women of lower socioeconomic status should be considered in health strategies that promote nutritional education and access to healthy foods. In addition, greater adherence to the traditional pattern among older women suggests that the worsening of diet quality may be a recent phenomenon. Machine learning models demonstrated the ability to identify vulnerable populations, contributing to the promotion and prevention of food insecurity in an agile and effective manner. Among them, RDA presented the best performance when including sociodemographic and mental health factors.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESCompreender o comportamento alimentar é essencial para direcionar intervenções nutricionais eficazes, uma vez que reflete as escolhas e práticas alimentares da população, influenciadas por transformações ao longo dos anos. Essas mudanças contribuem para a transição nutricional que afetam os padrões alimentares. Entretanto, fatores socioeconômicos impactam diretamente esses padrões, entre mulheres de baixa renda, que enfrentam maior vulnerabilidade social e dificuldades no acesso a alimentos de qualidade. A insegurança alimentar, marcada pela preocupação, incerteza e privação de alimentos adequados, afeta milhões de brasileiros, sendo mais intensa entre famílias chefiadas por mulheres. Em 2022, cerca de 125,2 milhões de pessoas enfrentavam algum grau desse problema, evidenciando a necessidade de políticas públicas voltadas para a redução das desigualdades e garantia da segurança alimentar. O objetivo deste trabalho foi analisar o consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa. Trata-se de um estudo transversal aninhado a uma coorte prospectiva, com 268 mulheres entre 18 e 59 anos recrutadas em 10 Unidades Básicas de Saúde da Família para a análise do consumo alimentar, e 262 mulheres para a avaliação da insegurança alimenta. Foram realizadas entrevistas face a face para a caracterização da amostra, avaliação do estado nutricional, avaliação do consumo alimentar a partir de recordatórios alimentares de 24 horas, avaliação da insegurança alimentar, inventário de ansiedade traçoestado e questionário de qualidade de vida da OMS. Os padrões alimentares foram identificados por análise fatorial exploratória, utilizando extração por componentes principais, considerando fatores com autovalor maior que 1 e rotação varimax. A adesão a esses padrões foi avaliada por testes de comparação de médias (T-Student e ANOVA), enquanto a associação com variáveis independentes foi analisada por regressão logística múltipla, com cada fator dicotomizado como variável dependente. Além disso, foram aplicados 14 modelos de aprendizagem de máquina para classificação e identificação dos fatores associados. A seleção do melhor conjunto de hiperparâmetros foi feita com base na área sob a curva ROC, além das métricas de acurácia, F-measure, precisão, recall, especificidade e coeficiente Kappa. Foram identificados quatro padrões alimentares: “Não saudável”, “Misto 1”, “Misto 2” e “Tradicional”, que explicam 36% da variância total da amostra. Estar gestante esteve associado com maior adesão tanto ao padrão “Não saudável” (OR: 7,62; IC95%: 3,59 – 16,19) como ao padrão “Tradicional” (OR: 6,00; IC95%: 2,82-12,78). Ter mais que 35 anos esteve relacionado com o padrão “Tradicional” (OR: 2,10; IC95%: 1,06 – 4,18) e a baixa escolaridade com o padrão “Não saudável” (OR: 3,10; IC95%: 1,18 – 8,12). O modelo RDA demonstrou bom desempenho na classificação da insegurança alimentar, atingindo 81% de acurácia, ou seja, classificando corretamente oito em cada 10 mulheres. Sua precisão foi de 73%, indicando que, a cada 10 mulheres preditas com insegurança alimentar, sete foram corretamente classificadas. Embora a renda não tenha se destacado diretamente entre as variáveis mais importantes, o recebimento de benefícios governamentais mostrou uma relação direta na importância das variáveis. Ainda assim, a tendência de escolha por alimentos não saudáveis entre mulheres de menor nível socioeconômico deve ser considerado em estratégias de saúde que promovam educação nutricional e acesso a alimentos saudáveis. Além disso, a maior adesão ao padrão tradicional entre mulheres mais velhas sugere que a piora na qualidade da alimentação pode ser um fenômeno recente. Os modelos de aprendizagem de máquina demonstraram capacidade de identificar populações em vulnerabilidade, contribuindo para a promoção e prevenção da insegurança alimentar de forma ágil e eficaz. Entre eles, o RDA apresentou o melhor desempenho ao incluir fatores sociodemográficos e de saúde mental.Universidade Federal da ParaíbaBrasilCiências Exatas e da SaúdePrograma de Pós-Graduação em Modelos de Decisão e SaúdeUFPBVianna, Rodrigo Pinheiro de Toledohttp://lattes.cnpq.br/3915051035089861Lima Filho, Luiz Medeiros de Araújohttp://lattes.cnpq.br/8680871640499952Gomes, Nadjeanny Ingrid Galdino2025-07-21T13:05:35Z2025-03-192025-07-21T13:05:35Z2025-02-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://repositorio.ufpb.br/jspui/handle/123456789/35245porAttribution-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFPBinstname:Universidade Federal da Paraíba (UFPB)instacron:UFPB2025-07-22T06:07:54Zoai:repositorio.ufpb.br:123456789/35245Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufpb.br/PUBhttp://tede.biblioteca.ufpb.br:8080/oai/requestdiretoria@ufpb.br|| bdtd@biblioteca.ufpb.bropendoar:2025-07-22T06:07:54Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)false
dc.title.none.fl_str_mv Análise do consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa, Paraíba
title Análise do consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa, Paraíba
spellingShingle Análise do consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa, Paraíba
Gomes, Nadjeanny Ingrid Galdino
Consumo alimentar - Mulheres
Padrões alimentares - Mulheres
Insegurança alimentar - Mulheres
Aprendizagem de máquina supervisionado
Food consumption
Dietary patterns
Women
Food insecurity
Supervised Machine Learning
CNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVA
title_short Análise do consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa, Paraíba
title_full Análise do consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa, Paraíba
title_fullStr Análise do consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa, Paraíba
title_full_unstemmed Análise do consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa, Paraíba
title_sort Análise do consumo alimentar e a situação de insegurança alimentar de mulheres adultas usuárias do SUS de João Pessoa, Paraíba
author Gomes, Nadjeanny Ingrid Galdino
author_facet Gomes, Nadjeanny Ingrid Galdino
author_role author
dc.contributor.none.fl_str_mv Vianna, Rodrigo Pinheiro de Toledo
http://lattes.cnpq.br/3915051035089861
Lima Filho, Luiz Medeiros de Araújo
http://lattes.cnpq.br/8680871640499952
dc.contributor.author.fl_str_mv Gomes, Nadjeanny Ingrid Galdino
dc.subject.por.fl_str_mv Consumo alimentar - Mulheres
Padrões alimentares - Mulheres
Insegurança alimentar - Mulheres
Aprendizagem de máquina supervisionado
Food consumption
Dietary patterns
Women
Food insecurity
Supervised Machine Learning
CNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVA
topic Consumo alimentar - Mulheres
Padrões alimentares - Mulheres
Insegurança alimentar - Mulheres
Aprendizagem de máquina supervisionado
Food consumption
Dietary patterns
Women
Food insecurity
Supervised Machine Learning
CNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVA
description Understanding eating behavior is essential to direct effective nutritional interventions, since it reflects the population's eating choices and practices, influenced by changes over the years. These changes contribute to the nutritional transition that affects eating patterns. However, socioeconomic factors directly impact these patterns, among low-income women, who face greater social vulnerability and difficulties in accessing quality food. Food insecurity, marked by concern, uncertainty, and deprivation of adequate food, affects millions of Brazilians, being more intense among families headed by women. In 2022, approximately 125.2 million people faced some degree of this problem, highlighting the need for public policies aimed at reducing inequalities and ensuring food security. The objective of this study was to analyze food consumption and the food insecurity situation of adult women users of the SUS in João Pessoa. This was a cross-sectional study nested in a prospective cohort, with 268 women aged 18 to 59 years recruited from 10 Basic Family Health Units for the analysis of food consumption, and 262 women for the assessment of food insecurity. Face-to-face interviews were conducted to characterize the sample, assess nutritional status, assess food consumption from 24-hour dietary recalls, assess food insecurity, assess state-trait anxiety inventory and the WHO quality of life questionnaire. Dietary patterns were identified by exploratory factor analysis, using principal components extraction, considering factors with eigenvalue greater than 1 and varimax rotation. Adherence to these patterns was assessed by means of comparison tests (T-Student and ANOVA), while the association with independent variables was analyzed by multiple logistic regression, with each factor dichotomized as a dependent variable. In addition, 14 machine learning models were applied to classify and identify associated factors. The best set of hyperparameters was selected based on the area under the ROC curve, in addition to the accuracy metrics, F-measure, precision, recall, specificity and Kappa coefficient. Four dietary patterns were identified: “Unhealthy”, “Mixed 1”, “Mixed 2” and “Traditional”, which explain 36% of the total variance of the sample. Being pregnant was associated with greater adherence to both the “Unhealthy” pattern (OR: 7.62; 95% CI: 3.59–16.19) and the “Traditional” pattern (OR: 6.00; 95% CI: 2.82–12.78). Being over 35 years old was associated with the “Traditional” pattern (OR: 2.10; 95%CI: 1.06–4.18) and low education level with the “Unhealthy” pattern (OR: 3.10; 95%CI: 1.18–8.12). The RDA model demonstrated good performance in classifying food insecurity, reaching 81% accuracy, that is, correctly classifying eight out of every 10 women. Its accuracy was 73%, indicating that, for every 10 women predicted to be food insecure, seven were correctly classified. Although income did not stand out directly among the most important variables, receipt of government benefits showed a direct relationship in the importance of the variables. Even so, the tendency to choose unhealthy foods among women of lower socioeconomic status should be considered in health strategies that promote nutritional education and access to healthy foods. In addition, greater adherence to the traditional pattern among older women suggests that the worsening of diet quality may be a recent phenomenon. Machine learning models demonstrated the ability to identify vulnerable populations, contributing to the promotion and prevention of food insecurity in an agile and effective manner. Among them, RDA presented the best performance when including sociodemographic and mental health factors.
publishDate 2025
dc.date.none.fl_str_mv 2025-07-21T13:05:35Z
2025-03-19
2025-07-21T13:05:35Z
2025-02-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpb.br/jspui/handle/123456789/35245
url https://repositorio.ufpb.br/jspui/handle/123456789/35245
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Ciências Exatas e da Saúde
Programa de Pós-Graduação em Modelos de Decisão e Saúde
UFPB
publisher.none.fl_str_mv Universidade Federal da Paraíba
Brasil
Ciências Exatas e da Saúde
Programa de Pós-Graduação em Modelos de Decisão e Saúde
UFPB
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFPB
instname:Universidade Federal da Paraíba (UFPB)
instacron:UFPB
instname_str Universidade Federal da Paraíba (UFPB)
instacron_str UFPB
institution UFPB
reponame_str Biblioteca Digital de Teses e Dissertações da UFPB
collection Biblioteca Digital de Teses e Dissertações da UFPB
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFPB - Universidade Federal da Paraíba (UFPB)
repository.mail.fl_str_mv diretoria@ufpb.br|| bdtd@biblioteca.ufpb.br
_version_ 1846251533295943680