New Extended Lifetime Distributions
| Ano de defesa: | 2014 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/12240 |
Resumo: | Este trabalho está dividido em quatro capítulos independentes. Nos Capítulos 2 e 3 propomos extensões para a distribuição Weibull. A primeira delas, com cinco parâmetros, é uma composição das distribuições beta e Weibull Poisson. Essa nova distribuição tem como submodelos algumas importantes distribuições descritas na literatura e outras ainda não discutidas tais como: bata exponencial Poisson, Weibull Poisson exponencializada, Rayleigh Poisson exponencializada, beta Weibull, Weibull, exponencial, entre outras. Obtemos algumas propriedades matemáticas tais como momentos ordinários e incompletos, estatísticas de ordem e seus momentos e entropia de Rényi. Usamos o método da máxima verossimilhança para obter estimativas dos parâmetros. A potencialidade desse novo modelo é mostrada por meio de um conjunto de dados reais. A segunda extensão, com quatro parâmetros, é uma composição das distribuições Poisson generalizada e Weibull, tendo a Poisson generalizada exponencial, a Rayleigh Poisson, Weibull Poisson e Weibull como alguns de seus sub-modelos. Várias propriedades matemáticas foram investigadas, incluíndo expressões explícitas para os momentos ordinários e incompletos, desvios médios, função quantílica, curvas de Bonferroni e Lorentz, con abilidade e as entropias de Rényi e Shannon. Estatísticas de ordem e seus momentos são investigados. A estimativa de parâmetros é feita pelo método da máxima verossimilhança e é obtida a matriz de informação obsevada. Uma aplicação a um conjunto de dados reais mostra a utilidade do novo modelo. Nos dois últimos capítulos propomos duas novas classes de distribuições. No Capítulo 4 apresentamos a família G- Binomial Negativa com dois parâmetros extras. Essa nova família inclui como caso especial um modelo bastante popular, a Weibull binomial negativa, discutida por Rodrigues et al.(Advances and Applications in Statistics 22 (2011), 25-55.) Algumas propriedades matemáticas da nova classe são estudadas, incluindo momentos e função geradora. O método de máxima verossimilhança é utilizado para obter estimativas dos parâmetros. A utilidade da nova classe é mostrada através de um exemplo com conjuntos de dados reais. No Capítulo 5 apresentamos a classe Zeta-G com um parâmetro extra e algumas nova distribuições desta classe. Obtemos expressões explícitas para a função quantílica, momentos ordinários e incompletos, dois tipos de entropia, con abilidade e momentos das estatísticas de ordem. Usamos o método da máxima verossimilhança para estimar os parâmetros e a utilidade da nova classe é exempli cada com um conjunto de dados reais. |
| id |
UFPE_0139b2a9606387b182f6c24870ca9e0f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/12240 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
New Extended Lifetime DistributionsDistribuição betaDistribuição Poisson generalizadaDistribuição binomial negativaDistribuição Weibull PoissonDistribuição ZetaEntropiaMáxima verossimilhançaEste trabalho está dividido em quatro capítulos independentes. Nos Capítulos 2 e 3 propomos extensões para a distribuição Weibull. A primeira delas, com cinco parâmetros, é uma composição das distribuições beta e Weibull Poisson. Essa nova distribuição tem como submodelos algumas importantes distribuições descritas na literatura e outras ainda não discutidas tais como: bata exponencial Poisson, Weibull Poisson exponencializada, Rayleigh Poisson exponencializada, beta Weibull, Weibull, exponencial, entre outras. Obtemos algumas propriedades matemáticas tais como momentos ordinários e incompletos, estatísticas de ordem e seus momentos e entropia de Rényi. Usamos o método da máxima verossimilhança para obter estimativas dos parâmetros. A potencialidade desse novo modelo é mostrada por meio de um conjunto de dados reais. A segunda extensão, com quatro parâmetros, é uma composição das distribuições Poisson generalizada e Weibull, tendo a Poisson generalizada exponencial, a Rayleigh Poisson, Weibull Poisson e Weibull como alguns de seus sub-modelos. Várias propriedades matemáticas foram investigadas, incluíndo expressões explícitas para os momentos ordinários e incompletos, desvios médios, função quantílica, curvas de Bonferroni e Lorentz, con abilidade e as entropias de Rényi e Shannon. Estatísticas de ordem e seus momentos são investigados. A estimativa de parâmetros é feita pelo método da máxima verossimilhança e é obtida a matriz de informação obsevada. Uma aplicação a um conjunto de dados reais mostra a utilidade do novo modelo. Nos dois últimos capítulos propomos duas novas classes de distribuições. No Capítulo 4 apresentamos a família G- Binomial Negativa com dois parâmetros extras. Essa nova família inclui como caso especial um modelo bastante popular, a Weibull binomial negativa, discutida por Rodrigues et al.(Advances and Applications in Statistics 22 (2011), 25-55.) Algumas propriedades matemáticas da nova classe são estudadas, incluindo momentos e função geradora. O método de máxima verossimilhança é utilizado para obter estimativas dos parâmetros. A utilidade da nova classe é mostrada através de um exemplo com conjuntos de dados reais. No Capítulo 5 apresentamos a classe Zeta-G com um parâmetro extra e algumas nova distribuições desta classe. Obtemos expressões explícitas para a função quantílica, momentos ordinários e incompletos, dois tipos de entropia, con abilidade e momentos das estatísticas de ordem. Usamos o método da máxima verossimilhança para estimar os parâmetros e a utilidade da nova classe é exempli cada com um conjunto de dados reais.Universidade Federal de PernambucoSANTOS, Josenildo dosCORDEIRO, Gauss MoutinhoPAIXÃO, Ana Carla Percontini da2015-03-12T18:21:26Z2015-03-12T18:21:26Z2014-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfPAIXÃO, Ana Carla Percontini da. New extended lifetime distributions. Recife, 2014. 116 f. Tese (doutorado) - UFPE, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Matemática Computacional, 2014..https://repositorio.ufpe.br/handle/123456789/12240porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T07:56:21Zoai:repositorio.ufpe.br:123456789/12240Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:56:21Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
New Extended Lifetime Distributions |
| title |
New Extended Lifetime Distributions |
| spellingShingle |
New Extended Lifetime Distributions PAIXÃO, Ana Carla Percontini da Distribuição beta Distribuição Poisson generalizada Distribuição binomial negativa Distribuição Weibull Poisson Distribuição Zeta Entropia Máxima verossimilhança |
| title_short |
New Extended Lifetime Distributions |
| title_full |
New Extended Lifetime Distributions |
| title_fullStr |
New Extended Lifetime Distributions |
| title_full_unstemmed |
New Extended Lifetime Distributions |
| title_sort |
New Extended Lifetime Distributions |
| author |
PAIXÃO, Ana Carla Percontini da |
| author_facet |
PAIXÃO, Ana Carla Percontini da |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
SANTOS, Josenildo dos CORDEIRO, Gauss Moutinho |
| dc.contributor.author.fl_str_mv |
PAIXÃO, Ana Carla Percontini da |
| dc.subject.por.fl_str_mv |
Distribuição beta Distribuição Poisson generalizada Distribuição binomial negativa Distribuição Weibull Poisson Distribuição Zeta Entropia Máxima verossimilhança |
| topic |
Distribuição beta Distribuição Poisson generalizada Distribuição binomial negativa Distribuição Weibull Poisson Distribuição Zeta Entropia Máxima verossimilhança |
| description |
Este trabalho está dividido em quatro capítulos independentes. Nos Capítulos 2 e 3 propomos extensões para a distribuição Weibull. A primeira delas, com cinco parâmetros, é uma composição das distribuições beta e Weibull Poisson. Essa nova distribuição tem como submodelos algumas importantes distribuições descritas na literatura e outras ainda não discutidas tais como: bata exponencial Poisson, Weibull Poisson exponencializada, Rayleigh Poisson exponencializada, beta Weibull, Weibull, exponencial, entre outras. Obtemos algumas propriedades matemáticas tais como momentos ordinários e incompletos, estatísticas de ordem e seus momentos e entropia de Rényi. Usamos o método da máxima verossimilhança para obter estimativas dos parâmetros. A potencialidade desse novo modelo é mostrada por meio de um conjunto de dados reais. A segunda extensão, com quatro parâmetros, é uma composição das distribuições Poisson generalizada e Weibull, tendo a Poisson generalizada exponencial, a Rayleigh Poisson, Weibull Poisson e Weibull como alguns de seus sub-modelos. Várias propriedades matemáticas foram investigadas, incluíndo expressões explícitas para os momentos ordinários e incompletos, desvios médios, função quantílica, curvas de Bonferroni e Lorentz, con abilidade e as entropias de Rényi e Shannon. Estatísticas de ordem e seus momentos são investigados. A estimativa de parâmetros é feita pelo método da máxima verossimilhança e é obtida a matriz de informação obsevada. Uma aplicação a um conjunto de dados reais mostra a utilidade do novo modelo. Nos dois últimos capítulos propomos duas novas classes de distribuições. No Capítulo 4 apresentamos a família G- Binomial Negativa com dois parâmetros extras. Essa nova família inclui como caso especial um modelo bastante popular, a Weibull binomial negativa, discutida por Rodrigues et al.(Advances and Applications in Statistics 22 (2011), 25-55.) Algumas propriedades matemáticas da nova classe são estudadas, incluindo momentos e função geradora. O método de máxima verossimilhança é utilizado para obter estimativas dos parâmetros. A utilidade da nova classe é mostrada através de um exemplo com conjuntos de dados reais. No Capítulo 5 apresentamos a classe Zeta-G com um parâmetro extra e algumas nova distribuições desta classe. Obtemos expressões explícitas para a função quantílica, momentos ordinários e incompletos, dois tipos de entropia, con abilidade e momentos das estatísticas de ordem. Usamos o método da máxima verossimilhança para estimar os parâmetros e a utilidade da nova classe é exempli cada com um conjunto de dados reais. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-01-31 2015-03-12T18:21:26Z 2015-03-12T18:21:26Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
PAIXÃO, Ana Carla Percontini da. New extended lifetime distributions. Recife, 2014. 116 f. Tese (doutorado) - UFPE, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Matemática Computacional, 2014.. https://repositorio.ufpe.br/handle/123456789/12240 |
| identifier_str_mv |
PAIXÃO, Ana Carla Percontini da. New extended lifetime distributions. Recife, 2014. 116 f. Tese (doutorado) - UFPE, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Matemática Computacional, 2014.. |
| url |
https://repositorio.ufpe.br/handle/123456789/12240 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042034218926080 |