Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados
| Ano de defesa: | 2004 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/2472 |
Resumo: | As Redes Neurais Artificiais (RNA) têm sido utilizadas com sucesso em tarefas como mapeamento de funções complexas e reconhecimento de padrões. Este sucesso é resultado da habilidade das RNA em realizar cálculos com dados complexos ou imprecisos, aprender a partir de exemplos, generalizar a informação aprendida, extrair padrões e descobrir tendências. Apesar destas vantagens, geralmente não é muito fácil obter explicações de como uma RNA representa a solução de um problema. Devido a esta limitação, as RNA têm sido consideradas inadequadas para serem utilizadas em aplicações de KDD (Knowledge Discovery in Databases) em que o usuário deseja saber o raciocínio usado pela rede para obter uma dada conclusão. Sistemas Híbridos Inteligentes (SHI) é uma abordagem de Inteligência Artificial que vem sendo bastante utilizada na resolução de problemas onde o emprego de uma única técnica não é suficiente para obter resultados satisfatórios. Tais sistemas se inspiram na integração de duas ou mais técnicas inteligentes com o intuito de suprir as limitações de cada técnica. A disseminação dos SHI tem contribuído para a emergência dos Sistemas Neurais Híbridos (SNH). O principal foco de pesquisa em SNH tem sido a integração de RNA, técnica fortemente baseada em dados, com técnicas que utilizam representação simbólica, como Lógica Fuzzy e algoritmos simbólicos convencionais. Os Sistemas Neuro-Fuzzy são um exemplo de SNH que combinam sistemas conexionistas com sistemas fuzzy. Nestes sistemas é aplicado algum método de extração de regras que permite a representação do conhecimento incorporado pela rede numa forma compreensível. Além das técnicas de extração de conhecimento simbólico associadas aos Sistemas Neuro-Fuzzy, diversas técnicas têm sido propostas para outros modelos neurais. Esta dissertação tem como principais objetivos investigar o paradigma dos Sistemas Neuro-Fuzzy e as técnicas de extração de conhecimento simbólico de RNA como uma opção para tornar as RNA mais adequadas ao processo de KDD; e, como resultado da investigação, modelar e implementar uma ferramenta de software, a Neural Mining, baseada na abordagem neural híbrida. A ferramenta Neural Mining integra, em um único ambiente, o modelo Perceptron Multicamadas (Multilayer Perceptron - MLP); os modelos neuro-fuzzy FWD (Feature-Weighted Detector) e FuNN (Fuzzy Neural Network), juntamente com suas técnicas de extração de regras; e a técnica TREPAN (Trees Parroting Networks), que representa o conhecimento incorporado por uma RNA na forma de uma árvore de decisão. Os modelos e técnicas são avaliados e comparados com relação à capacidade de generalização e compreensibilidade do conhecimento extraído. Além da análise nas etapas de mineração de dados e apresentação do conhecimento, também são investigadas duas técnicas de seleção de atributos: a técnica do modelo FWD e através da árvore de decisão gerada por TREPAN. A investigação experimental é realizada usando uma base de dados de um problema real e de larga escala no domínio de análise de crédito ao consumidor. Como os resultados obtidos demonstram que os ganhos decorrentes do uso de modelos neuro-fuzzy e técnicas de extração de conhecimento simbólico de RNA são bastante significativos, ao final da investigação, considerando as vantagens de cada modelo e técnica, são propostas duas soluções neurais híbridas para o processo de KDD |
| id |
UFPE_02bc0bfa76df4eb893f6110e269b3dba |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2472 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de DadosRedes neurais artificiaisDescoberta de conhecimento em BasAs Redes Neurais Artificiais (RNA) têm sido utilizadas com sucesso em tarefas como mapeamento de funções complexas e reconhecimento de padrões. Este sucesso é resultado da habilidade das RNA em realizar cálculos com dados complexos ou imprecisos, aprender a partir de exemplos, generalizar a informação aprendida, extrair padrões e descobrir tendências. Apesar destas vantagens, geralmente não é muito fácil obter explicações de como uma RNA representa a solução de um problema. Devido a esta limitação, as RNA têm sido consideradas inadequadas para serem utilizadas em aplicações de KDD (Knowledge Discovery in Databases) em que o usuário deseja saber o raciocínio usado pela rede para obter uma dada conclusão. Sistemas Híbridos Inteligentes (SHI) é uma abordagem de Inteligência Artificial que vem sendo bastante utilizada na resolução de problemas onde o emprego de uma única técnica não é suficiente para obter resultados satisfatórios. Tais sistemas se inspiram na integração de duas ou mais técnicas inteligentes com o intuito de suprir as limitações de cada técnica. A disseminação dos SHI tem contribuído para a emergência dos Sistemas Neurais Híbridos (SNH). O principal foco de pesquisa em SNH tem sido a integração de RNA, técnica fortemente baseada em dados, com técnicas que utilizam representação simbólica, como Lógica Fuzzy e algoritmos simbólicos convencionais. Os Sistemas Neuro-Fuzzy são um exemplo de SNH que combinam sistemas conexionistas com sistemas fuzzy. Nestes sistemas é aplicado algum método de extração de regras que permite a representação do conhecimento incorporado pela rede numa forma compreensível. Além das técnicas de extração de conhecimento simbólico associadas aos Sistemas Neuro-Fuzzy, diversas técnicas têm sido propostas para outros modelos neurais. Esta dissertação tem como principais objetivos investigar o paradigma dos Sistemas Neuro-Fuzzy e as técnicas de extração de conhecimento simbólico de RNA como uma opção para tornar as RNA mais adequadas ao processo de KDD; e, como resultado da investigação, modelar e implementar uma ferramenta de software, a Neural Mining, baseada na abordagem neural híbrida. A ferramenta Neural Mining integra, em um único ambiente, o modelo Perceptron Multicamadas (Multilayer Perceptron - MLP); os modelos neuro-fuzzy FWD (Feature-Weighted Detector) e FuNN (Fuzzy Neural Network), juntamente com suas técnicas de extração de regras; e a técnica TREPAN (Trees Parroting Networks), que representa o conhecimento incorporado por uma RNA na forma de uma árvore de decisão. Os modelos e técnicas são avaliados e comparados com relação à capacidade de generalização e compreensibilidade do conhecimento extraído. Além da análise nas etapas de mineração de dados e apresentação do conhecimento, também são investigadas duas técnicas de seleção de atributos: a técnica do modelo FWD e através da árvore de decisão gerada por TREPAN. A investigação experimental é realizada usando uma base de dados de um problema real e de larga escala no domínio de análise de crédito ao consumidor. Como os resultados obtidos demonstram que os ganhos decorrentes do uso de modelos neuro-fuzzy e técnicas de extração de conhecimento simbólico de RNA são bastante significativos, ao final da investigação, considerando as vantagens de cada modelo e técnica, são propostas duas soluções neurais híbridas para o processo de KDDUniversidade Federal de PernambucoCrispim Vasconcelos, Germano Pereira de Amorim, Bruno2014-06-12T15:58:31Z2014-06-12T15:58:31Z2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPereira de Amorim, Bruno; Crispim Vasconcelos, Germano. Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2004.https://repositorio.ufpe.br/handle/123456789/2472porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T05:06:01Zoai:repositorio.ufpe.br:123456789/2472Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:06:01Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados |
| title |
Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados |
| spellingShingle |
Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados Pereira de Amorim, Bruno Redes neurais artificiais Descoberta de conhecimento em Bas |
| title_short |
Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados |
| title_full |
Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados |
| title_fullStr |
Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados |
| title_full_unstemmed |
Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados |
| title_sort |
Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados |
| author |
Pereira de Amorim, Bruno |
| author_facet |
Pereira de Amorim, Bruno |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Crispim Vasconcelos, Germano |
| dc.contributor.author.fl_str_mv |
Pereira de Amorim, Bruno |
| dc.subject.por.fl_str_mv |
Redes neurais artificiais Descoberta de conhecimento em Bas |
| topic |
Redes neurais artificiais Descoberta de conhecimento em Bas |
| description |
As Redes Neurais Artificiais (RNA) têm sido utilizadas com sucesso em tarefas como mapeamento de funções complexas e reconhecimento de padrões. Este sucesso é resultado da habilidade das RNA em realizar cálculos com dados complexos ou imprecisos, aprender a partir de exemplos, generalizar a informação aprendida, extrair padrões e descobrir tendências. Apesar destas vantagens, geralmente não é muito fácil obter explicações de como uma RNA representa a solução de um problema. Devido a esta limitação, as RNA têm sido consideradas inadequadas para serem utilizadas em aplicações de KDD (Knowledge Discovery in Databases) em que o usuário deseja saber o raciocínio usado pela rede para obter uma dada conclusão. Sistemas Híbridos Inteligentes (SHI) é uma abordagem de Inteligência Artificial que vem sendo bastante utilizada na resolução de problemas onde o emprego de uma única técnica não é suficiente para obter resultados satisfatórios. Tais sistemas se inspiram na integração de duas ou mais técnicas inteligentes com o intuito de suprir as limitações de cada técnica. A disseminação dos SHI tem contribuído para a emergência dos Sistemas Neurais Híbridos (SNH). O principal foco de pesquisa em SNH tem sido a integração de RNA, técnica fortemente baseada em dados, com técnicas que utilizam representação simbólica, como Lógica Fuzzy e algoritmos simbólicos convencionais. Os Sistemas Neuro-Fuzzy são um exemplo de SNH que combinam sistemas conexionistas com sistemas fuzzy. Nestes sistemas é aplicado algum método de extração de regras que permite a representação do conhecimento incorporado pela rede numa forma compreensível. Além das técnicas de extração de conhecimento simbólico associadas aos Sistemas Neuro-Fuzzy, diversas técnicas têm sido propostas para outros modelos neurais. Esta dissertação tem como principais objetivos investigar o paradigma dos Sistemas Neuro-Fuzzy e as técnicas de extração de conhecimento simbólico de RNA como uma opção para tornar as RNA mais adequadas ao processo de KDD; e, como resultado da investigação, modelar e implementar uma ferramenta de software, a Neural Mining, baseada na abordagem neural híbrida. A ferramenta Neural Mining integra, em um único ambiente, o modelo Perceptron Multicamadas (Multilayer Perceptron - MLP); os modelos neuro-fuzzy FWD (Feature-Weighted Detector) e FuNN (Fuzzy Neural Network), juntamente com suas técnicas de extração de regras; e a técnica TREPAN (Trees Parroting Networks), que representa o conhecimento incorporado por uma RNA na forma de uma árvore de decisão. Os modelos e técnicas são avaliados e comparados com relação à capacidade de generalização e compreensibilidade do conhecimento extraído. Além da análise nas etapas de mineração de dados e apresentação do conhecimento, também são investigadas duas técnicas de seleção de atributos: a técnica do modelo FWD e através da árvore de decisão gerada por TREPAN. A investigação experimental é realizada usando uma base de dados de um problema real e de larga escala no domínio de análise de crédito ao consumidor. Como os resultados obtidos demonstram que os ganhos decorrentes do uso de modelos neuro-fuzzy e técnicas de extração de conhecimento simbólico de RNA são bastante significativos, ao final da investigação, considerando as vantagens de cada modelo e técnica, são propostas duas soluções neurais híbridas para o processo de KDD |
| publishDate |
2004 |
| dc.date.none.fl_str_mv |
2004 2014-06-12T15:58:31Z 2014-06-12T15:58:31Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
Pereira de Amorim, Bruno; Crispim Vasconcelos, Germano. Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2004. https://repositorio.ufpe.br/handle/123456789/2472 |
| identifier_str_mv |
Pereira de Amorim, Bruno; Crispim Vasconcelos, Germano. Desenvolvimento de uma Plataforma Híbrida para Descoberta de Conhecimento em Bases de Dados. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2004. |
| url |
https://repositorio.ufpe.br/handle/123456789/2472 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042111180210176 |