A Performance Analysis of a Reactive-based Complex Event Processing Library
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/35362 |
Resumo: | Reactive applications are an important class of software designed to respond to events or changes surrounding an area of interest in a timely manner. Many different approaches have been proposed to project those applications, such as Complex Event Processing (CEP) and Reactive Languages (RLs). Despite being developed by different communities, they offer complementary solutions that could benefit their development. Meanwhile, the Internet of Things (IoT) is among the recent areas where reactive application solutions have been applied. IoT has a tremendous potential of allowing the creation of innovative applications, so the acquisition of IoT devices aligned with a great production of data, often called Big Data, is posing many challenges. As an alternative to deal with challenges faced by IoT stream processing placed on the cloud, Edge Analitycs has been proposed, consisting of placing part of the processing in the edge of the network. Pushing the processing toward the edge may incur in other challenges as well, since the devices are often resource-constrained. Combining the support for stream processing in those constrained devices and the proper adjustment of performance, a constant requirement in reactive applications, will be very important to allow this new trend. Therefore, this study presents CEP.js, a library to code complex event processing reactively that we have been developing, and reports an empirical study where CEP.js’ underlying reactive libraries, Most.js and RxJS, are varied to find out which performance aspects are more affected by those libraries while running in an Edge Analytics scenario. The results have shown that Most.js produced the worst results under different load levels and the differences were statistically significant. Consequently, both considered aspects, memory consumption and CPU usage, are more affected by the reactive library, Most.js. |
| id |
UFPE_1851aa5328dbfb2255b3abb4dc862144 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/35362 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
A Performance Analysis of a Reactive-based Complex Event Processing LibraryEngenharia de SoftwareInternet das CoisasAnalytics na BordaAplicações ReativasReactive applications are an important class of software designed to respond to events or changes surrounding an area of interest in a timely manner. Many different approaches have been proposed to project those applications, such as Complex Event Processing (CEP) and Reactive Languages (RLs). Despite being developed by different communities, they offer complementary solutions that could benefit their development. Meanwhile, the Internet of Things (IoT) is among the recent areas where reactive application solutions have been applied. IoT has a tremendous potential of allowing the creation of innovative applications, so the acquisition of IoT devices aligned with a great production of data, often called Big Data, is posing many challenges. As an alternative to deal with challenges faced by IoT stream processing placed on the cloud, Edge Analitycs has been proposed, consisting of placing part of the processing in the edge of the network. Pushing the processing toward the edge may incur in other challenges as well, since the devices are often resource-constrained. Combining the support for stream processing in those constrained devices and the proper adjustment of performance, a constant requirement in reactive applications, will be very important to allow this new trend. Therefore, this study presents CEP.js, a library to code complex event processing reactively that we have been developing, and reports an empirical study where CEP.js’ underlying reactive libraries, Most.js and RxJS, are varied to find out which performance aspects are more affected by those libraries while running in an Edge Analytics scenario. The results have shown that Most.js produced the worst results under different load levels and the differences were statistically significant. Consequently, both considered aspects, memory consumption and CPU usage, are more affected by the reactive library, Most.js.FACEPEAs aplicações reativas são uma classe importante de software projetada para responder a eventos ou mudanças em torno de uma área de interesse de maneira oportuna. Muitas abordagens diferentes foram propostas para projetar essas aplicações, tais como Processamento de Eventos Complexos (CEP) e Linguagens Reativas (RLs). Apesar de terem sido desenvolvidas por diferentes comunidades, elas oferecem soluções complementares que podem beneficiar seus desenvolvimentos. Enquanto isso, a Internet das Coisas (IoT) está entre as áreas recentes nas quais as soluções de aplicações reativas estão sendo aplicadas. IoT tem um tremendo potencial para permitir a criação de aplicações inovadoras, portanto, a aquisição de dispositivos IoT alinhado a uma grande produção de dados, geralmente chamada de Big Data, apresenta muitos desafios. Como uma alternativa para lidar com os desafios enfrentados pelo processamento de fluxo da IoT colocado na nuvem, o Edge Analitycs foi proposto, consistindo em colocar parte do processamento na borda da rede. Empurrar o processamento em direção à borda pode incorrer em outros desafios também, uma vez que os dispositivos possuem comumente recursos limitados. Combinar o suporte para o processamento de streams nesses dispositivos restritos e o ajuste adequado de performance, um requisito constante em aplicações reativas, será muito importante para permitir essa nova tendência. Portanto, este estudo apresenta CEP.js, uma biblioteca para codificar processamento de eventos complexos de forma reativa que nós temos desenvolvido, e relata um estudo empírico onde as bibliotecas reativas subjacentes de CEP.js, Most.js e RxJS, são alternadas para descobrir quais aspectos de desempenho são mais afetados por essas bibliotecas enquanto que executando em um cenário de analytics na borda. Os resultados mostraram que Most.js produziu os piores resultados sob os diferentes níveis de carga e as diferenças mostraram-se estatisticamente significantes. Consequentemente, ambos os aspectos considerados, consumo de memória e uso de CPU, são mais afetados pela biblioteca reativa, Most.js.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoGAMA, Kiev Santos dahttp://lattes.cnpq.br/8472465190102818http://lattes.cnpq.br/6185519785664724LIMA, Carlos Eduardo Zimmerle de2019-11-28T22:32:48Z2019-11-28T22:32:48Z2019-08-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfLIMA, Carlos Eduardo Zimmerle de. A Performance Analysis of a Reactive-based Complex Event Processing Library. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.https://repositorio.ufpe.br/handle/123456789/35362engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-11-29T05:17:20Zoai:repositorio.ufpe.br:123456789/35362Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-11-29T05:17:20Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
A Performance Analysis of a Reactive-based Complex Event Processing Library |
| title |
A Performance Analysis of a Reactive-based Complex Event Processing Library |
| spellingShingle |
A Performance Analysis of a Reactive-based Complex Event Processing Library LIMA, Carlos Eduardo Zimmerle de Engenharia de Software Internet das Coisas Analytics na Borda Aplicações Reativas |
| title_short |
A Performance Analysis of a Reactive-based Complex Event Processing Library |
| title_full |
A Performance Analysis of a Reactive-based Complex Event Processing Library |
| title_fullStr |
A Performance Analysis of a Reactive-based Complex Event Processing Library |
| title_full_unstemmed |
A Performance Analysis of a Reactive-based Complex Event Processing Library |
| title_sort |
A Performance Analysis of a Reactive-based Complex Event Processing Library |
| author |
LIMA, Carlos Eduardo Zimmerle de |
| author_facet |
LIMA, Carlos Eduardo Zimmerle de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
GAMA, Kiev Santos da http://lattes.cnpq.br/8472465190102818 http://lattes.cnpq.br/6185519785664724 |
| dc.contributor.author.fl_str_mv |
LIMA, Carlos Eduardo Zimmerle de |
| dc.subject.por.fl_str_mv |
Engenharia de Software Internet das Coisas Analytics na Borda Aplicações Reativas |
| topic |
Engenharia de Software Internet das Coisas Analytics na Borda Aplicações Reativas |
| description |
Reactive applications are an important class of software designed to respond to events or changes surrounding an area of interest in a timely manner. Many different approaches have been proposed to project those applications, such as Complex Event Processing (CEP) and Reactive Languages (RLs). Despite being developed by different communities, they offer complementary solutions that could benefit their development. Meanwhile, the Internet of Things (IoT) is among the recent areas where reactive application solutions have been applied. IoT has a tremendous potential of allowing the creation of innovative applications, so the acquisition of IoT devices aligned with a great production of data, often called Big Data, is posing many challenges. As an alternative to deal with challenges faced by IoT stream processing placed on the cloud, Edge Analitycs has been proposed, consisting of placing part of the processing in the edge of the network. Pushing the processing toward the edge may incur in other challenges as well, since the devices are often resource-constrained. Combining the support for stream processing in those constrained devices and the proper adjustment of performance, a constant requirement in reactive applications, will be very important to allow this new trend. Therefore, this study presents CEP.js, a library to code complex event processing reactively that we have been developing, and reports an empirical study where CEP.js’ underlying reactive libraries, Most.js and RxJS, are varied to find out which performance aspects are more affected by those libraries while running in an Edge Analytics scenario. The results have shown that Most.js produced the worst results under different load levels and the differences were statistically significant. Consequently, both considered aspects, memory consumption and CPU usage, are more affected by the reactive library, Most.js. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-11-28T22:32:48Z 2019-11-28T22:32:48Z 2019-08-02 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
LIMA, Carlos Eduardo Zimmerle de. A Performance Analysis of a Reactive-based Complex Event Processing Library. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019. https://repositorio.ufpe.br/handle/123456789/35362 |
| identifier_str_mv |
LIMA, Carlos Eduardo Zimmerle de. A Performance Analysis of a Reactive-based Complex Event Processing Library. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019. |
| url |
https://repositorio.ufpe.br/handle/123456789/35362 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041841165598720 |