Sistema neural híbrido para reconhecimento de padrões em um nariz artificial
| Ano de defesa: | 2004 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/2488 |
Resumo: | Esta dissertação investiga a utilização de Sistemas Híbridos Inteligentes no sistema de reconhecimento de padrões de um nariz artificial. O trabalho envolve cinco partes principais: (1) avaliação da base de dados de odores a partir de uma técnica estatística multivariada; (2) validação das Redes Neurais com Atrasos no Tempo no reconhecimento de odores; (3) avaliação da Transformada de Wavelets como método de pré-processamento de sinais de odores em abordagens conexionistas; (4) avaliação de abordagens híbridas inteligentes para o reconhecimento de odores em narizes artificiais; e (5) o estudo de caso. Duas arquiteturas híbridas inteligentes foram investigadas em detalhes: a rede neuro-difusa Feature-weighted Detector, que permite a classificação de padrões, seleção dos atributos mais importantes e extração de regras explicativas da rede; e a rede neuro-difusa Evolving Fuzzy Neural Networks, que possibilita o aprendizado on-line e incremental, além da inserção, extração e agregação de conhecimento em sua arquitetura evolutiva. Foram analisados sinais gerados por um nariz artificial, composto por um conjunto de oito sensores de polímeros condutores, exposto a gases derivados do petróleo. A utilização da Transformada de Wavelet melhorou consideravelmente o desempenho dos classificadores conexionistas. Nos experimentos realizados, as Redes Neurais com Atrasos no Tempo obtiveram um erro médio de classificação de 0.75%, enquanto que as Redes Perceptron Multi-Camadas obtiveram um erro médio de 11.5%. Dentre as abordagens hibridas investigadas, a rede Feature-weighted Detector, obteve um erro médio de classificação de 20.72% e a rede Evolving Fuzzy Neural Networks obteve um erro médio de 0.88% na classificação dos odores. |
| id |
UFPE_2656793512e6b9277620b11f1dca0817 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2488 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Sistema neural híbrido para reconhecimento de padrões em um nariz artificialSistemas híbridos inteligentesReconhecimento de padrõesNarizes artificiaisRedes neurais artificiaisEsta dissertação investiga a utilização de Sistemas Híbridos Inteligentes no sistema de reconhecimento de padrões de um nariz artificial. O trabalho envolve cinco partes principais: (1) avaliação da base de dados de odores a partir de uma técnica estatística multivariada; (2) validação das Redes Neurais com Atrasos no Tempo no reconhecimento de odores; (3) avaliação da Transformada de Wavelets como método de pré-processamento de sinais de odores em abordagens conexionistas; (4) avaliação de abordagens híbridas inteligentes para o reconhecimento de odores em narizes artificiais; e (5) o estudo de caso. Duas arquiteturas híbridas inteligentes foram investigadas em detalhes: a rede neuro-difusa Feature-weighted Detector, que permite a classificação de padrões, seleção dos atributos mais importantes e extração de regras explicativas da rede; e a rede neuro-difusa Evolving Fuzzy Neural Networks, que possibilita o aprendizado on-line e incremental, além da inserção, extração e agregação de conhecimento em sua arquitetura evolutiva. Foram analisados sinais gerados por um nariz artificial, composto por um conjunto de oito sensores de polímeros condutores, exposto a gases derivados do petróleo. A utilização da Transformada de Wavelet melhorou consideravelmente o desempenho dos classificadores conexionistas. Nos experimentos realizados, as Redes Neurais com Atrasos no Tempo obtiveram um erro médio de classificação de 0.75%, enquanto que as Redes Perceptron Multi-Camadas obtiveram um erro médio de 11.5%. Dentre as abordagens hibridas investigadas, a rede Feature-weighted Detector, obteve um erro médio de classificação de 20.72% e a rede Evolving Fuzzy Neural Networks obteve um erro médio de 0.88% na classificação dos odores.Universidade Federal de PernambucoLudermir, Teresa BernardaZanchettin, Cleber2014-06-12T15:58:45Z2014-06-12T15:58:45Z2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfZancrettin, Cleber; Bernarda Ludermir, Teresa. Sistema neural híbrido para reconhecimento de padrões em um nariz artificial. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2004.https://repositorio.ufpe.br/handle/123456789/2488porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T05:07:28Zoai:repositorio.ufpe.br:123456789/2488Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:07:28Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Sistema neural híbrido para reconhecimento de padrões em um nariz artificial |
| title |
Sistema neural híbrido para reconhecimento de padrões em um nariz artificial |
| spellingShingle |
Sistema neural híbrido para reconhecimento de padrões em um nariz artificial Zanchettin, Cleber Sistemas híbridos inteligentes Reconhecimento de padrões Narizes artificiais Redes neurais artificiais |
| title_short |
Sistema neural híbrido para reconhecimento de padrões em um nariz artificial |
| title_full |
Sistema neural híbrido para reconhecimento de padrões em um nariz artificial |
| title_fullStr |
Sistema neural híbrido para reconhecimento de padrões em um nariz artificial |
| title_full_unstemmed |
Sistema neural híbrido para reconhecimento de padrões em um nariz artificial |
| title_sort |
Sistema neural híbrido para reconhecimento de padrões em um nariz artificial |
| author |
Zanchettin, Cleber |
| author_facet |
Zanchettin, Cleber |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Ludermir, Teresa Bernarda |
| dc.contributor.author.fl_str_mv |
Zanchettin, Cleber |
| dc.subject.por.fl_str_mv |
Sistemas híbridos inteligentes Reconhecimento de padrões Narizes artificiais Redes neurais artificiais |
| topic |
Sistemas híbridos inteligentes Reconhecimento de padrões Narizes artificiais Redes neurais artificiais |
| description |
Esta dissertação investiga a utilização de Sistemas Híbridos Inteligentes no sistema de reconhecimento de padrões de um nariz artificial. O trabalho envolve cinco partes principais: (1) avaliação da base de dados de odores a partir de uma técnica estatística multivariada; (2) validação das Redes Neurais com Atrasos no Tempo no reconhecimento de odores; (3) avaliação da Transformada de Wavelets como método de pré-processamento de sinais de odores em abordagens conexionistas; (4) avaliação de abordagens híbridas inteligentes para o reconhecimento de odores em narizes artificiais; e (5) o estudo de caso. Duas arquiteturas híbridas inteligentes foram investigadas em detalhes: a rede neuro-difusa Feature-weighted Detector, que permite a classificação de padrões, seleção dos atributos mais importantes e extração de regras explicativas da rede; e a rede neuro-difusa Evolving Fuzzy Neural Networks, que possibilita o aprendizado on-line e incremental, além da inserção, extração e agregação de conhecimento em sua arquitetura evolutiva. Foram analisados sinais gerados por um nariz artificial, composto por um conjunto de oito sensores de polímeros condutores, exposto a gases derivados do petróleo. A utilização da Transformada de Wavelet melhorou consideravelmente o desempenho dos classificadores conexionistas. Nos experimentos realizados, as Redes Neurais com Atrasos no Tempo obtiveram um erro médio de classificação de 0.75%, enquanto que as Redes Perceptron Multi-Camadas obtiveram um erro médio de 11.5%. Dentre as abordagens hibridas investigadas, a rede Feature-weighted Detector, obteve um erro médio de classificação de 20.72% e a rede Evolving Fuzzy Neural Networks obteve um erro médio de 0.88% na classificação dos odores. |
| publishDate |
2004 |
| dc.date.none.fl_str_mv |
2004 2014-06-12T15:58:45Z 2014-06-12T15:58:45Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
Zancrettin, Cleber; Bernarda Ludermir, Teresa. Sistema neural híbrido para reconhecimento de padrões em um nariz artificial. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2004. https://repositorio.ufpe.br/handle/123456789/2488 |
| identifier_str_mv |
Zancrettin, Cleber; Bernarda Ludermir, Teresa. Sistema neural híbrido para reconhecimento de padrões em um nariz artificial. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2004. |
| url |
https://repositorio.ufpe.br/handle/123456789/2488 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041912064016384 |