Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap
| Ano de defesa: | 2007 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/6288 |
Resumo: | Desde que tecnologia da informação tornou-se essencial para muitas atividades da vida moderna e grandes conjuntos de dados surgiram junto com ela, mineração de dados tornou-se uma das mais importantes áreas de pesquisa na ciência estatística. Apesar de existirem muitos campos relacionados a mineração de dados, a tarefa de classificação ainda figura como uma das mais comuns na literatura estatística. Esta dissertação faz uma revisão de dois métodos clássicos de classificação, análise discriminante linear e quadrática, e um método não-paramétrico, a análise discriminante de núcleo. Experimentos de simulação e conjuntos de dados reais são utilizados para avaliar e comparar os três métodos de classificação. Também apresenta algumas contribuições relacionadas aos métodos boosting e bootstrap no contexto de classificação. A primeira contribuição trata-se de uma nova formulação para o método boosting em análise discriminante linear. Os resultados numéricos mostram que esta nova formulação tem desempenho similar à formulação usual. Entretanto, a nova formulação do método boosting é conceitualmente mais adequada. Dois métodos bootstrap para problemas de classificação são introduzidos e avaliados. O primeiro método bootstrap é utilizado para obter uma fronteira de classificação. O conceito de fronteira de classificação pode ser entendido como uma região onde é difícil alocar uma observação para uma das populações existentes. O segundo método bootstrap é um intervalo de confiança para a taxa de erro de classificação. Intervalos de confiança podem ser utilizados para comparar dois ou mais métodos de classificação na estrutura de inferência |
| id |
UFPE_270ccaa52f881dc12a8ca9073d7617e9 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/6288 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e BootstrapAnálise Discriminante LineaClassificaçãoDesde que tecnologia da informação tornou-se essencial para muitas atividades da vida moderna e grandes conjuntos de dados surgiram junto com ela, mineração de dados tornou-se uma das mais importantes áreas de pesquisa na ciência estatística. Apesar de existirem muitos campos relacionados a mineração de dados, a tarefa de classificação ainda figura como uma das mais comuns na literatura estatística. Esta dissertação faz uma revisão de dois métodos clássicos de classificação, análise discriminante linear e quadrática, e um método não-paramétrico, a análise discriminante de núcleo. Experimentos de simulação e conjuntos de dados reais são utilizados para avaliar e comparar os três métodos de classificação. Também apresenta algumas contribuições relacionadas aos métodos boosting e bootstrap no contexto de classificação. A primeira contribuição trata-se de uma nova formulação para o método boosting em análise discriminante linear. Os resultados numéricos mostram que esta nova formulação tem desempenho similar à formulação usual. Entretanto, a nova formulação do método boosting é conceitualmente mais adequada. Dois métodos bootstrap para problemas de classificação são introduzidos e avaliados. O primeiro método bootstrap é utilizado para obter uma fronteira de classificação. O conceito de fronteira de classificação pode ser entendido como uma região onde é difícil alocar uma observação para uma das populações existentes. O segundo método bootstrap é um intervalo de confiança para a taxa de erro de classificação. Intervalos de confiança podem ser utilizados para comparar dois ou mais métodos de classificação na estrutura de inferênciaCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de PernambucoJosé Amorim do Amaral, Getúlio Rodrigo Portela Ferreira, Marcelo2014-06-12T18:03:40Z2014-06-12T18:03:40Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfRodrigo Portela Ferreira, Marcelo; José Amorim do Amaral, Getúlio. Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2007.https://repositorio.ufpe.br/handle/123456789/6288porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T17:30:20Zoai:repositorio.ufpe.br:123456789/6288Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T17:30:20Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap |
| title |
Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap |
| spellingShingle |
Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap Rodrigo Portela Ferreira, Marcelo Análise Discriminante Linea Classificação |
| title_short |
Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap |
| title_full |
Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap |
| title_fullStr |
Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap |
| title_full_unstemmed |
Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap |
| title_sort |
Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap |
| author |
Rodrigo Portela Ferreira, Marcelo |
| author_facet |
Rodrigo Portela Ferreira, Marcelo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
José Amorim do Amaral, Getúlio |
| dc.contributor.author.fl_str_mv |
Rodrigo Portela Ferreira, Marcelo |
| dc.subject.por.fl_str_mv |
Análise Discriminante Linea Classificação |
| topic |
Análise Discriminante Linea Classificação |
| description |
Desde que tecnologia da informação tornou-se essencial para muitas atividades da vida moderna e grandes conjuntos de dados surgiram junto com ela, mineração de dados tornou-se uma das mais importantes áreas de pesquisa na ciência estatística. Apesar de existirem muitos campos relacionados a mineração de dados, a tarefa de classificação ainda figura como uma das mais comuns na literatura estatística. Esta dissertação faz uma revisão de dois métodos clássicos de classificação, análise discriminante linear e quadrática, e um método não-paramétrico, a análise discriminante de núcleo. Experimentos de simulação e conjuntos de dados reais são utilizados para avaliar e comparar os três métodos de classificação. Também apresenta algumas contribuições relacionadas aos métodos boosting e bootstrap no contexto de classificação. A primeira contribuição trata-se de uma nova formulação para o método boosting em análise discriminante linear. Os resultados numéricos mostram que esta nova formulação tem desempenho similar à formulação usual. Entretanto, a nova formulação do método boosting é conceitualmente mais adequada. Dois métodos bootstrap para problemas de classificação são introduzidos e avaliados. O primeiro método bootstrap é utilizado para obter uma fronteira de classificação. O conceito de fronteira de classificação pode ser entendido como uma região onde é difícil alocar uma observação para uma das populações existentes. O segundo método bootstrap é um intervalo de confiança para a taxa de erro de classificação. Intervalos de confiança podem ser utilizados para comparar dois ou mais métodos de classificação na estrutura de inferência |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007 2014-06-12T18:03:40Z 2014-06-12T18:03:40Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
Rodrigo Portela Ferreira, Marcelo; José Amorim do Amaral, Getúlio. Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2007. https://repositorio.ufpe.br/handle/123456789/6288 |
| identifier_str_mv |
Rodrigo Portela Ferreira, Marcelo; José Amorim do Amaral, Getúlio. Análise discriminante clássica e de núcleo: avaliação e algumas contribuições relativas aos métodos Boosting e Bootstrap. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2007. |
| url |
https://repositorio.ufpe.br/handle/123456789/6288 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041977220431872 |