Rastreamento de vídeo com aprendizagem em tempo real
| Ano de defesa: | 2014 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/11833 |
Resumo: | Em visão computacional, a área de rastreamento de objetos tem crescido enormemente. O aumento do poder computacional na última década tem permitido que aplicações em tempo real sejam agora possíveis. Em particular, o ramo de rastreamento de objetos tem se beneficiado com essa evolução e agora é utilizado em diversas aplicações desde a área de segurança até a de entretenimento. As primeiras técnicas se baseiam principalmente no vetor de movimento de sub-regiões da imagem e comparação entre as sub-regiões de um quadro do vídeo com o seguinte. Com isso, uma pontuação é computada para cada posição no quadro seguinte no qual o objeto alvo tem maior probabilidade de estar e a posição com maior valor é escolhida como a sua nova posição. Esses rastreadores normalmente são chamados de rastreadores de curto prazo, isso porque uma vez que o objeto é perdido de vista não é possível que ele volte a ser rastreado. Em contrapartida, visando continuar o rastreamento mesmo quando ele é perdido por algum tempo, nos últimos anos uma nova classe de rastreadores foi criada: os rastreadores por detecção. Nestes métodos, uma fase de rastreamento define a posição do objeto em um quadro a partir da sua posição no quadro anterior. Além da fase de rastreamento, uma fase de detecção visa encontrar o objeto sem que haja qualquer dependência com o seu histórico de posicionamento. A resposta de cada uma das duas técnicas é combinada de forma que a nova posição seja determinada. Quando o rastreamento é perdido por causa de alguma condição de ruído (como oclusão ou algum movimento rápido), a detecção é utilizada para reinicializar o rastreamento, o que possibilita a criação de um rastreador de longo prazo. Visando construir tal tipo de rastreador, o presente trabalho elabora um método de rastreamento por detecção. Mais especificamente, o principal objetivo da técnica elaborada é rastrear um objeto em um cenário complexo onde existam outros objetos semelhantes com problemas de difícil tratamento como oclusão, mudança de escala e mudança de pose. Para que isso seja possível, foi utilizado um esquema baseado em detecção, rastreamento e aprendizagem. Na fase de rastreamento, um rastreador de curto prazo comum e consolidado é utilizado. A fase de aprendizagem tem a função de selecionar amostras para o treinamento do módulo de detecção. A fase de detecção é constituída por quatro classificadores em cascata. Dentre eles, o classificador online cascade boosted classifier (OCBC) é utilizado, uma das principais contribuições deste trabalho. O OCBC é um detector do tipo cascata que possui um treinamento em tempo de execução. O método criado foi testado utilizando várias bases de rastreamento de faces com diversos níveis de dificuldade e os resultados mostraram um avanço em relação ao estado da arte. |
| id |
UFPE_32270cfd876edff0b3b98f4e4f8422b8 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/11833 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Rastreamento de vídeo com aprendizagem em tempo realRastreamentoDetecçãoAprendizagem em Tempo RealAdaboostEm visão computacional, a área de rastreamento de objetos tem crescido enormemente. O aumento do poder computacional na última década tem permitido que aplicações em tempo real sejam agora possíveis. Em particular, o ramo de rastreamento de objetos tem se beneficiado com essa evolução e agora é utilizado em diversas aplicações desde a área de segurança até a de entretenimento. As primeiras técnicas se baseiam principalmente no vetor de movimento de sub-regiões da imagem e comparação entre as sub-regiões de um quadro do vídeo com o seguinte. Com isso, uma pontuação é computada para cada posição no quadro seguinte no qual o objeto alvo tem maior probabilidade de estar e a posição com maior valor é escolhida como a sua nova posição. Esses rastreadores normalmente são chamados de rastreadores de curto prazo, isso porque uma vez que o objeto é perdido de vista não é possível que ele volte a ser rastreado. Em contrapartida, visando continuar o rastreamento mesmo quando ele é perdido por algum tempo, nos últimos anos uma nova classe de rastreadores foi criada: os rastreadores por detecção. Nestes métodos, uma fase de rastreamento define a posição do objeto em um quadro a partir da sua posição no quadro anterior. Além da fase de rastreamento, uma fase de detecção visa encontrar o objeto sem que haja qualquer dependência com o seu histórico de posicionamento. A resposta de cada uma das duas técnicas é combinada de forma que a nova posição seja determinada. Quando o rastreamento é perdido por causa de alguma condição de ruído (como oclusão ou algum movimento rápido), a detecção é utilizada para reinicializar o rastreamento, o que possibilita a criação de um rastreador de longo prazo. Visando construir tal tipo de rastreador, o presente trabalho elabora um método de rastreamento por detecção. Mais especificamente, o principal objetivo da técnica elaborada é rastrear um objeto em um cenário complexo onde existam outros objetos semelhantes com problemas de difícil tratamento como oclusão, mudança de escala e mudança de pose. Para que isso seja possível, foi utilizado um esquema baseado em detecção, rastreamento e aprendizagem. Na fase de rastreamento, um rastreador de curto prazo comum e consolidado é utilizado. A fase de aprendizagem tem a função de selecionar amostras para o treinamento do módulo de detecção. A fase de detecção é constituída por quatro classificadores em cascata. Dentre eles, o classificador online cascade boosted classifier (OCBC) é utilizado, uma das principais contribuições deste trabalho. O OCBC é um detector do tipo cascata que possui um treinamento em tempo de execução. O método criado foi testado utilizando várias bases de rastreamento de faces com diversos níveis de dificuldade e os resultados mostraram um avanço em relação ao estado da arte.Universidade Federal de PernambucoCavalcanti, George Darmiton da CunhaRen, Tsang IngPrata, Thiago Lessa2015-03-10T19:42:35Z2015-03-10T19:42:35Z2014-02-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPRATA, Thiago Lessa. Rastreamento de vídeo com aprendizagem em tempo real. Recife, 2014. 93 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2014.https://repositorio.ufpe.br/handle/123456789/11833porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T22:51:48Zoai:repositorio.ufpe.br:123456789/11833Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T22:51:48Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Rastreamento de vídeo com aprendizagem em tempo real |
| title |
Rastreamento de vídeo com aprendizagem em tempo real |
| spellingShingle |
Rastreamento de vídeo com aprendizagem em tempo real Prata, Thiago Lessa Rastreamento Detecção Aprendizagem em Tempo Real Adaboost |
| title_short |
Rastreamento de vídeo com aprendizagem em tempo real |
| title_full |
Rastreamento de vídeo com aprendizagem em tempo real |
| title_fullStr |
Rastreamento de vídeo com aprendizagem em tempo real |
| title_full_unstemmed |
Rastreamento de vídeo com aprendizagem em tempo real |
| title_sort |
Rastreamento de vídeo com aprendizagem em tempo real |
| author |
Prata, Thiago Lessa |
| author_facet |
Prata, Thiago Lessa |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cavalcanti, George Darmiton da Cunha Ren, Tsang Ing |
| dc.contributor.author.fl_str_mv |
Prata, Thiago Lessa |
| dc.subject.por.fl_str_mv |
Rastreamento Detecção Aprendizagem em Tempo Real Adaboost |
| topic |
Rastreamento Detecção Aprendizagem em Tempo Real Adaboost |
| description |
Em visão computacional, a área de rastreamento de objetos tem crescido enormemente. O aumento do poder computacional na última década tem permitido que aplicações em tempo real sejam agora possíveis. Em particular, o ramo de rastreamento de objetos tem se beneficiado com essa evolução e agora é utilizado em diversas aplicações desde a área de segurança até a de entretenimento. As primeiras técnicas se baseiam principalmente no vetor de movimento de sub-regiões da imagem e comparação entre as sub-regiões de um quadro do vídeo com o seguinte. Com isso, uma pontuação é computada para cada posição no quadro seguinte no qual o objeto alvo tem maior probabilidade de estar e a posição com maior valor é escolhida como a sua nova posição. Esses rastreadores normalmente são chamados de rastreadores de curto prazo, isso porque uma vez que o objeto é perdido de vista não é possível que ele volte a ser rastreado. Em contrapartida, visando continuar o rastreamento mesmo quando ele é perdido por algum tempo, nos últimos anos uma nova classe de rastreadores foi criada: os rastreadores por detecção. Nestes métodos, uma fase de rastreamento define a posição do objeto em um quadro a partir da sua posição no quadro anterior. Além da fase de rastreamento, uma fase de detecção visa encontrar o objeto sem que haja qualquer dependência com o seu histórico de posicionamento. A resposta de cada uma das duas técnicas é combinada de forma que a nova posição seja determinada. Quando o rastreamento é perdido por causa de alguma condição de ruído (como oclusão ou algum movimento rápido), a detecção é utilizada para reinicializar o rastreamento, o que possibilita a criação de um rastreador de longo prazo. Visando construir tal tipo de rastreador, o presente trabalho elabora um método de rastreamento por detecção. Mais especificamente, o principal objetivo da técnica elaborada é rastrear um objeto em um cenário complexo onde existam outros objetos semelhantes com problemas de difícil tratamento como oclusão, mudança de escala e mudança de pose. Para que isso seja possível, foi utilizado um esquema baseado em detecção, rastreamento e aprendizagem. Na fase de rastreamento, um rastreador de curto prazo comum e consolidado é utilizado. A fase de aprendizagem tem a função de selecionar amostras para o treinamento do módulo de detecção. A fase de detecção é constituída por quatro classificadores em cascata. Dentre eles, o classificador online cascade boosted classifier (OCBC) é utilizado, uma das principais contribuições deste trabalho. O OCBC é um detector do tipo cascata que possui um treinamento em tempo de execução. O método criado foi testado utilizando várias bases de rastreamento de faces com diversos níveis de dificuldade e os resultados mostraram um avanço em relação ao estado da arte. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-02-14 2015-03-10T19:42:35Z 2015-03-10T19:42:35Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
PRATA, Thiago Lessa. Rastreamento de vídeo com aprendizagem em tempo real. Recife, 2014. 93 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2014. https://repositorio.ufpe.br/handle/123456789/11833 |
| identifier_str_mv |
PRATA, Thiago Lessa. Rastreamento de vídeo com aprendizagem em tempo real. Recife, 2014. 93 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2014. |
| url |
https://repositorio.ufpe.br/handle/123456789/11833 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042116245880832 |