A Quantum Genetic Algorithm Framework For The MaxCut Problem
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/64777 |
Resumo: | The MaxCut problem is a fundamental problem in Combinatorial Optimization, with sig- nificant implications across diverse domains such as logistics, network design, and statistical physics. The algorithm represents innovative approaches that balance theoretical rigor with practical scalability. The proposed method introduces a Quantum Genetic Algorithm (QGA) using a Grover-based evolutionary framework and divide-and-conquer principles. By partition- ing graphs into manageable subgraphs, optimizing each independently, and applying graph contraction to merge the solutions, the method exploits the inherent binary symmetry of Max- Cut to ensure a more efficient and robust approximation performance. Theoretical analysis establishes a foundation for a better performance of the algorithm, while empirical evalua- tions provide quantitative evidence of its effectiveness. On complete graphs, the proposed method consistently achieves the true optimal MaxCut values, outperforming the Semidefi- nite Programming (SDP) approach, which provides up to 99.7% of the optimal solution for larger graphs. On Erdős-Rényi random graphs, the QGA demonstrates competitive perfor- mance, achieving median solutions within 92-96% of the SDP results. These results showcase the potential of the QGA framework to deliver competitive solutions, even under heuristic constraints, while demonstrating its promise for scalability as quantum hardware evolves. |
| id |
UFPE_3a8fc3c09100e2b4804576ab708cda96 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/64777 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
A Quantum Genetic Algorithm Framework For The MaxCut ProblemComputação quânticaOtimização combinatóriaGraph TheoryThe MaxCut problem is a fundamental problem in Combinatorial Optimization, with sig- nificant implications across diverse domains such as logistics, network design, and statistical physics. The algorithm represents innovative approaches that balance theoretical rigor with practical scalability. The proposed method introduces a Quantum Genetic Algorithm (QGA) using a Grover-based evolutionary framework and divide-and-conquer principles. By partition- ing graphs into manageable subgraphs, optimizing each independently, and applying graph contraction to merge the solutions, the method exploits the inherent binary symmetry of Max- Cut to ensure a more efficient and robust approximation performance. Theoretical analysis establishes a foundation for a better performance of the algorithm, while empirical evalua- tions provide quantitative evidence of its effectiveness. On complete graphs, the proposed method consistently achieves the true optimal MaxCut values, outperforming the Semidefi- nite Programming (SDP) approach, which provides up to 99.7% of the optimal solution for larger graphs. On Erdős-Rényi random graphs, the QGA demonstrates competitive perfor- mance, achieving median solutions within 92-96% of the SDP results. These results showcase the potential of the QGA framework to deliver competitive solutions, even under heuristic constraints, while demonstrating its promise for scalability as quantum hardware evolves.O problema do MaxCut é um problema fundamental da Otimização Combinatória, com implicações significativas em diversas áreas, como logística, projeto de redes e física estatística. O algoritmo proposto representa uma abordagem inovadora que equilibra rigor teórico com escalabilidade prática. O método introduz um Algoritmo Genético Quântico (QGA) baseado em um arcabouço evolucionário com Grover e princípios de divisão e conquista. Ao particionar grafos em subgrafos manejáveis, otimizá-los de forma independente e aplicar contração de grafos para combinar as soluções, o método explora a simetria binária inerente ao MaxCut para garantir um desempenho mais eficiente e robusto em termos de aproximação. A análise teórica estabelece a base para um desempenho superior do algoritmo, enquanto as avaliações empíricas fornecem evidências quantitativas de sua eficácia. Em grafos completos, o método proposto alcança consistentemente os valores ótimos verdadeiros do MaxCut, superando a abordagem por Programação Semidefinida (SDP), que fornece até 99,7% da solução ótima em grafos maiores. Em grafos aleatórios de Erdős–Rényi, o QGA apresenta desempenho competi- tivo, atingindo soluções medianas dentro de 92–96% dos resultados da SDP. Esses resultados destacam o potencial do arcabouço QGA para fornecer soluções competitivas, mesmo sob restrições heurísticas, ao mesmo tempo em que demonstram sua promessa de escalabilidade conforme o hardware quântico evolui.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoPAULA NETO, Fernando Maciano dehttp://lattes.cnpq.br/6531747120125479http://lattes.cnpq.br/9643216021359436ARAÚJO, Paulo André Viana de2025-08-01T12:20:00Z2025-08-01T12:20:00Z2025-01-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfARAÚJO, Paulo André Viana de. A Quantum Genetic Algorithm Framework For The MaxCut Problem. 2025. Dissertação (Mestrado em Ciências da Computação) – Universidade Federal de Pernambuco, Recife, 2025.https://repositorio.ufpe.br/handle/123456789/64777enghttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2025-08-03T17:51:25Zoai:repositorio.ufpe.br:123456789/64777Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212025-08-03T17:51:25Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
A Quantum Genetic Algorithm Framework For The MaxCut Problem |
| title |
A Quantum Genetic Algorithm Framework For The MaxCut Problem |
| spellingShingle |
A Quantum Genetic Algorithm Framework For The MaxCut Problem ARAÚJO, Paulo André Viana de Computação quântica Otimização combinatória Graph Theory |
| title_short |
A Quantum Genetic Algorithm Framework For The MaxCut Problem |
| title_full |
A Quantum Genetic Algorithm Framework For The MaxCut Problem |
| title_fullStr |
A Quantum Genetic Algorithm Framework For The MaxCut Problem |
| title_full_unstemmed |
A Quantum Genetic Algorithm Framework For The MaxCut Problem |
| title_sort |
A Quantum Genetic Algorithm Framework For The MaxCut Problem |
| author |
ARAÚJO, Paulo André Viana de |
| author_facet |
ARAÚJO, Paulo André Viana de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
PAULA NETO, Fernando Maciano de http://lattes.cnpq.br/6531747120125479 http://lattes.cnpq.br/9643216021359436 |
| dc.contributor.author.fl_str_mv |
ARAÚJO, Paulo André Viana de |
| dc.subject.por.fl_str_mv |
Computação quântica Otimização combinatória Graph Theory |
| topic |
Computação quântica Otimização combinatória Graph Theory |
| description |
The MaxCut problem is a fundamental problem in Combinatorial Optimization, with sig- nificant implications across diverse domains such as logistics, network design, and statistical physics. The algorithm represents innovative approaches that balance theoretical rigor with practical scalability. The proposed method introduces a Quantum Genetic Algorithm (QGA) using a Grover-based evolutionary framework and divide-and-conquer principles. By partition- ing graphs into manageable subgraphs, optimizing each independently, and applying graph contraction to merge the solutions, the method exploits the inherent binary symmetry of Max- Cut to ensure a more efficient and robust approximation performance. Theoretical analysis establishes a foundation for a better performance of the algorithm, while empirical evalua- tions provide quantitative evidence of its effectiveness. On complete graphs, the proposed method consistently achieves the true optimal MaxCut values, outperforming the Semidefi- nite Programming (SDP) approach, which provides up to 99.7% of the optimal solution for larger graphs. On Erdős-Rényi random graphs, the QGA demonstrates competitive perfor- mance, achieving median solutions within 92-96% of the SDP results. These results showcase the potential of the QGA framework to deliver competitive solutions, even under heuristic constraints, while demonstrating its promise for scalability as quantum hardware evolves. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-08-01T12:20:00Z 2025-08-01T12:20:00Z 2025-01-30 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
ARAÚJO, Paulo André Viana de. A Quantum Genetic Algorithm Framework For The MaxCut Problem. 2025. Dissertação (Mestrado em Ciências da Computação) – Universidade Federal de Pernambuco, Recife, 2025. https://repositorio.ufpe.br/handle/123456789/64777 |
| identifier_str_mv |
ARAÚJO, Paulo André Viana de. A Quantum Genetic Algorithm Framework For The MaxCut Problem. 2025. Dissertação (Mestrado em Ciências da Computação) – Universidade Federal de Pernambuco, Recife, 2025. |
| url |
https://repositorio.ufpe.br/handle/123456789/64777 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042049645576192 |