A context-sensitive offloading system using machine-learning classification algorithms with seamless mobility support

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: VALENTE JUNIOR, Warley Muricy
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/29848
Resumo: Mobile Cloud Computing (MCC) enables resource-constrained smartphones to run computation-intensive applications through code/data offloading to resourceful servers. Nevertheless, this technique can be disadvantageous if the offloading decision does not consider contextual information. Another MCC challenge is related to the change of access point during an on-going offloading process, since it impacts on or is impacted by resource scarcity, finite energy, and low connectivity in a wireless environment. This PhD research has developed a context-sensitive offloading system that takes advantage of the machine-learning reasoning techniques and robust profilers to provide offloading decisions with the best levels of accuracy as compared to state-of-the-art solutions. In addition, this work proposes a way to support seamless offloading operations during user mobility through the software-defined networking (SDN) paradigm and remote caching technique to speed up the offloading response time. Firstly, in order to address the offloading decision issue, the approach evaluates the main classifiers under a database comprised of cloud, smartphone, application, and networks parameters. Secondly, it transforms raw context parameters to high-level context information at runtime and evaluates the proposed system under real scenarios, where context information changes from one experiment to another. Under these conditions, system makes correct decisions as well as ensuring performance gains and energy efficiency, achieving decisions with 95% of accuracy. With regards SDN-based mobility support, the results have shown that it is energy efficient, especially considering the low-cost smartphone category, while remote caching proved to be an attractive alternative for reducing the offloading response time.
id UFPE_3d2b023362353bd452fa5bbc41b079f5
oai_identifier_str oai:repositorio.ufpe.br:123456789/29848
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling A context-sensitive offloading system using machine-learning classification algorithms with seamless mobility supportRedes de computadoresComputação em nuvemMobile Cloud Computing (MCC) enables resource-constrained smartphones to run computation-intensive applications through code/data offloading to resourceful servers. Nevertheless, this technique can be disadvantageous if the offloading decision does not consider contextual information. Another MCC challenge is related to the change of access point during an on-going offloading process, since it impacts on or is impacted by resource scarcity, finite energy, and low connectivity in a wireless environment. This PhD research has developed a context-sensitive offloading system that takes advantage of the machine-learning reasoning techniques and robust profilers to provide offloading decisions with the best levels of accuracy as compared to state-of-the-art solutions. In addition, this work proposes a way to support seamless offloading operations during user mobility through the software-defined networking (SDN) paradigm and remote caching technique to speed up the offloading response time. Firstly, in order to address the offloading decision issue, the approach evaluates the main classifiers under a database comprised of cloud, smartphone, application, and networks parameters. Secondly, it transforms raw context parameters to high-level context information at runtime and evaluates the proposed system under real scenarios, where context information changes from one experiment to another. Under these conditions, system makes correct decisions as well as ensuring performance gains and energy efficiency, achieving decisions with 95% of accuracy. With regards SDN-based mobility support, the results have shown that it is energy efficient, especially considering the low-cost smartphone category, while remote caching proved to be an attractive alternative for reducing the offloading response time.CAPESA computação em nuvem móvel (MCC) permite que smartphones com recursos limitados executem aplicações intensivas de computação através do offloading de código/dados para servidores potentes. No entanto, esta técnica pode ser desvantajosa se a decisão de offloading não considera informações contextuais. Outro desafio da MCC está relacionado à mudança de ponto de acesso durante um processo de offloading contínuo, uma vez que impacta ou é impactado pela escassez de recursos, energia finita e baixa conectividade em um ambiente sem fio. Esta pesquisa de doutorado desenvolveu um sistema de offloading sensível ao contexto que tira proveito das técnicas de raciocínio de aprendizagem de máquina e perfiladores robustos para prover decisões de offloading com os melhores níveis de acurácia em comparação com soluções do estado da arte. Além disso, este trabalho propõe uma maneira de suportar operações de offloading contínuas durante a mobilidade do usuário através do paradigma de redes definidas por software (SDN) e técnica de cache remoto para acelerar o tempo de resposta do offloading. Primeiramente, para resolver o problema da decisão de offloading, a abordagem avalia os principais classificadores sob uma base de dados composta de parâmetros relacionados a nuvem, smartphone, aplicativos e rede. Em segundo lugar, ela transforma parâmetros de contexto bruto em informações de contexto de alto nível em tempo de execução e avalia o sistema proposto em cenários reais, aonde as informações de contexto mudam de um experimento para outro. Nessas condições, o sistema toma decisões corretas, bem como garante ganhos de desempenho e eficiência energética, alcançando decisões com 95% de acurácia. Com relação ao suporte à mobilidade baseado em SDN, os resultados mostram que o sistema é eficiente em termos energéticos, especialmente considerando a categoria de smartphones de baixo custo, enquanto o cache remoto provou ser uma alternativa atrativa para reduzir o tempo de resposta de offloading.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoDIAS, Kelvin Lopeshttp://lattes.cnpq.br/3130043631888754http://lattes.cnpq.br/8664169441117482VALENTE JUNIOR, Warley Muricy2019-03-21T14:58:35Z2019-03-21T14:58:35Z2018-02-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/29848engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-26T03:30:12Zoai:repositorio.ufpe.br:123456789/29848Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T03:30:12Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv A context-sensitive offloading system using machine-learning classification algorithms with seamless mobility support
title A context-sensitive offloading system using machine-learning classification algorithms with seamless mobility support
spellingShingle A context-sensitive offloading system using machine-learning classification algorithms with seamless mobility support
VALENTE JUNIOR, Warley Muricy
Redes de computadores
Computação em nuvem
title_short A context-sensitive offloading system using machine-learning classification algorithms with seamless mobility support
title_full A context-sensitive offloading system using machine-learning classification algorithms with seamless mobility support
title_fullStr A context-sensitive offloading system using machine-learning classification algorithms with seamless mobility support
title_full_unstemmed A context-sensitive offloading system using machine-learning classification algorithms with seamless mobility support
title_sort A context-sensitive offloading system using machine-learning classification algorithms with seamless mobility support
author VALENTE JUNIOR, Warley Muricy
author_facet VALENTE JUNIOR, Warley Muricy
author_role author
dc.contributor.none.fl_str_mv DIAS, Kelvin Lopes
http://lattes.cnpq.br/3130043631888754
http://lattes.cnpq.br/8664169441117482
dc.contributor.author.fl_str_mv VALENTE JUNIOR, Warley Muricy
dc.subject.por.fl_str_mv Redes de computadores
Computação em nuvem
topic Redes de computadores
Computação em nuvem
description Mobile Cloud Computing (MCC) enables resource-constrained smartphones to run computation-intensive applications through code/data offloading to resourceful servers. Nevertheless, this technique can be disadvantageous if the offloading decision does not consider contextual information. Another MCC challenge is related to the change of access point during an on-going offloading process, since it impacts on or is impacted by resource scarcity, finite energy, and low connectivity in a wireless environment. This PhD research has developed a context-sensitive offloading system that takes advantage of the machine-learning reasoning techniques and robust profilers to provide offloading decisions with the best levels of accuracy as compared to state-of-the-art solutions. In addition, this work proposes a way to support seamless offloading operations during user mobility through the software-defined networking (SDN) paradigm and remote caching technique to speed up the offloading response time. Firstly, in order to address the offloading decision issue, the approach evaluates the main classifiers under a database comprised of cloud, smartphone, application, and networks parameters. Secondly, it transforms raw context parameters to high-level context information at runtime and evaluates the proposed system under real scenarios, where context information changes from one experiment to another. Under these conditions, system makes correct decisions as well as ensuring performance gains and energy efficiency, achieving decisions with 95% of accuracy. With regards SDN-based mobility support, the results have shown that it is energy efficient, especially considering the low-cost smartphone category, while remote caching proved to be an attractive alternative for reducing the offloading response time.
publishDate 2018
dc.date.none.fl_str_mv 2018-02-06
2019-03-21T14:58:35Z
2019-03-21T14:58:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/29848
url https://repositorio.ufpe.br/handle/123456789/29848
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042084017897472