Development of a multi-objective genetic algorithm to reduce individual risk and travelling time during evacuation in toxic cloud release scenarios
| Ano de defesa: | 2017 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/29582 |
Resumo: | The evacuation route planning is one of the protective actions that can be implemented in cases of hazardous substance leakage. Some toxic releases accidents that occurred recently in Brazil, such as in port of Santos, and release of a toxic gas in Cubatão, highlights the importance of an evacuation planning. Evacuation is the most complex mitigation measure so detailed analysis must be performed before planning. That is the reason the present work proposes a multiobjective optimization problem to give more information for the decision maker. The MOP aims to minimize both evacuation time and individual risk during evacuation due to a H₂S release in some of the treatment units in a hypothetical oil refinery. First, the possible accidental scenarios, causes and consequences are identified. After that, the scenarios with toxic cloud release and high severity are selected to be simulated in ALOHA® software in order to calculate the toxic concentration in each node of the evacuation route. The previous information is used in a multi-objective genetic algorithm written in C++ that results in a set of non-dominated solutions. Each solution was studied and the routes that both considered a good compromise between time and individual risk were selected. |
| id |
UFPE_40266d5b82386de0cb9cb8b42c53c914 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/29582 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Development of a multi-objective genetic algorithm to reduce individual risk and travelling time during evacuation in toxic cloud release scenariosEngenharia de ProduçãoEvacuation routeMulti-objective optimizationGenetic algorithmEvacuation timeIndividual riskThe evacuation route planning is one of the protective actions that can be implemented in cases of hazardous substance leakage. Some toxic releases accidents that occurred recently in Brazil, such as in port of Santos, and release of a toxic gas in Cubatão, highlights the importance of an evacuation planning. Evacuation is the most complex mitigation measure so detailed analysis must be performed before planning. That is the reason the present work proposes a multiobjective optimization problem to give more information for the decision maker. The MOP aims to minimize both evacuation time and individual risk during evacuation due to a H₂S release in some of the treatment units in a hypothetical oil refinery. First, the possible accidental scenarios, causes and consequences are identified. After that, the scenarios with toxic cloud release and high severity are selected to be simulated in ALOHA® software in order to calculate the toxic concentration in each node of the evacuation route. The previous information is used in a multi-objective genetic algorithm written in C++ that results in a set of non-dominated solutions. Each solution was studied and the routes that both considered a good compromise between time and individual risk were selected.CNPqO planejamento de rotas de evacuação é uma das ações de proteção que podem ser implementadas em casos de vazamento de substâncias perigosas. Alguns tóxicos liberados em acidentes ocorridos recentemente no Brasil, como no porto de Santos, e em Cubatão, destacam a importância de um planejamento de evacuação. A evacuação é a medida de mitigação mais complexa, e por essa razão uma análise detalhada deve ser realizada para ajudar no planejamento. Essa é a razão pela qual o presente trabalho propõe um problema de otimização multi-objetivo para dar mais informações ao tomador de decisão. O MOP visa minimizar o tempo de evacuação e o risco individual durante a evacuação devido a uma liberação de H₂S em algumas unidades de tratamento em uma refinaria de petróleo hipotética. Em primeiro lugar, são identificados os possíveis cenários acidentais, causas e consequências. Depois disso, os cenários com liberação de nuvem tóxica de alta severidade são selecionados para serem simulados no software ALOHA® e obter a concentração tóxica em cada nó da rota de evacuação. A informação anterior é utilizada em um algoritmo genético multi-objetivo escrito em C ++ que fornece como resultado um conjunto de soluções não-dominadas. Cada solução foi estudada e as rotas que consideraram um bom compromisso entre o tempo e o risco individual foram selecionadas.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia de ProducaoMOURA, Márcio José das Chagashttp://lattes.cnpq.br/1433428946420439http://lattes.cnpq.br/7778828466828647SILVA, Erika Oliveira da2019-03-07T22:35:17Z2019-03-07T22:35:17Z2017-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/29582engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-26T03:23:34Zoai:repositorio.ufpe.br:123456789/29582Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T03:23:34Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Development of a multi-objective genetic algorithm to reduce individual risk and travelling time during evacuation in toxic cloud release scenarios |
| title |
Development of a multi-objective genetic algorithm to reduce individual risk and travelling time during evacuation in toxic cloud release scenarios |
| spellingShingle |
Development of a multi-objective genetic algorithm to reduce individual risk and travelling time during evacuation in toxic cloud release scenarios SILVA, Erika Oliveira da Engenharia de Produção Evacuation route Multi-objective optimization Genetic algorithm Evacuation time Individual risk |
| title_short |
Development of a multi-objective genetic algorithm to reduce individual risk and travelling time during evacuation in toxic cloud release scenarios |
| title_full |
Development of a multi-objective genetic algorithm to reduce individual risk and travelling time during evacuation in toxic cloud release scenarios |
| title_fullStr |
Development of a multi-objective genetic algorithm to reduce individual risk and travelling time during evacuation in toxic cloud release scenarios |
| title_full_unstemmed |
Development of a multi-objective genetic algorithm to reduce individual risk and travelling time during evacuation in toxic cloud release scenarios |
| title_sort |
Development of a multi-objective genetic algorithm to reduce individual risk and travelling time during evacuation in toxic cloud release scenarios |
| author |
SILVA, Erika Oliveira da |
| author_facet |
SILVA, Erika Oliveira da |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
MOURA, Márcio José das Chagas http://lattes.cnpq.br/1433428946420439 http://lattes.cnpq.br/7778828466828647 |
| dc.contributor.author.fl_str_mv |
SILVA, Erika Oliveira da |
| dc.subject.por.fl_str_mv |
Engenharia de Produção Evacuation route Multi-objective optimization Genetic algorithm Evacuation time Individual risk |
| topic |
Engenharia de Produção Evacuation route Multi-objective optimization Genetic algorithm Evacuation time Individual risk |
| description |
The evacuation route planning is one of the protective actions that can be implemented in cases of hazardous substance leakage. Some toxic releases accidents that occurred recently in Brazil, such as in port of Santos, and release of a toxic gas in Cubatão, highlights the importance of an evacuation planning. Evacuation is the most complex mitigation measure so detailed analysis must be performed before planning. That is the reason the present work proposes a multiobjective optimization problem to give more information for the decision maker. The MOP aims to minimize both evacuation time and individual risk during evacuation due to a H₂S release in some of the treatment units in a hypothetical oil refinery. First, the possible accidental scenarios, causes and consequences are identified. After that, the scenarios with toxic cloud release and high severity are selected to be simulated in ALOHA® software in order to calculate the toxic concentration in each node of the evacuation route. The previous information is used in a multi-objective genetic algorithm written in C++ that results in a set of non-dominated solutions. Each solution was studied and the routes that both considered a good compromise between time and individual risk were selected. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-12-19 2019-03-07T22:35:17Z 2019-03-07T22:35:17Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/29582 |
| url |
https://repositorio.ufpe.br/handle/123456789/29582 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041932770246656 |