Examining the generalized odd log-Logistic Family : a regression compilation
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Estatistica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/56266 |
Resumo: | In this work, considering the family of distributions, generalized odd log-logistic-G, several applications have been proposed with different real data using regression models. The distri- butions of this family accommodate asymmetric, bimodal and heavy-tailed forms, showing flexibility when compared to other well-known generator distributions. Based on the generator family of distributions presented, regression models have been introduced with distinct sys- tematic structures, linking the explanatory variables through the parameters of the baseline distribution and all computational modeling is implemented using the R software. The first two applications involve two univariate distributions: Lindley and exponential. The first uses the novel generalized odd log-logistic Lindley distribution to evaluate data on the completed primary vaccination rate of COVID-19 in counties in the American state of Texas. The sec- ond uses the generalized odd log-logistic exponential distribution to investigate dengue fever weekly cases in the Federal District of Brazil. The other applications relied on the well-known continuous distributions, gamma, and Weibull distributions. The first applies the generalized odd log-logistic gamma distribution to agricultural data on yacon potatoes from a study in Peru. The following analysis employs the generalized odd log-logistic Weibull distribution to examine daily wind power generation data in Brazil. Monte Carlo simulations are used to eva- luate the accuracy of maximum likelihood estimates using a variety of measures. In order to determine the most suitable model, the research includes goodness-of-fit measures, diagnostics and residual analysis. Finally, the findings obtained utilizing various data sets demonstrated that the proposed models are a viable alternative to competing distributions. |
| id |
UFPE_44015ced5d7dc0c4b862ecc3ce0978ef |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/56266 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Examining the generalized odd log-Logistic Family : a regression compilationDiagnósticoFamília generalizada odd log-logísticaMáxima VerossimilhançaModelo de regressãoSimulaçãoIn this work, considering the family of distributions, generalized odd log-logistic-G, several applications have been proposed with different real data using regression models. The distri- butions of this family accommodate asymmetric, bimodal and heavy-tailed forms, showing flexibility when compared to other well-known generator distributions. Based on the generator family of distributions presented, regression models have been introduced with distinct sys- tematic structures, linking the explanatory variables through the parameters of the baseline distribution and all computational modeling is implemented using the R software. The first two applications involve two univariate distributions: Lindley and exponential. The first uses the novel generalized odd log-logistic Lindley distribution to evaluate data on the completed primary vaccination rate of COVID-19 in counties in the American state of Texas. The sec- ond uses the generalized odd log-logistic exponential distribution to investigate dengue fever weekly cases in the Federal District of Brazil. The other applications relied on the well-known continuous distributions, gamma, and Weibull distributions. The first applies the generalized odd log-logistic gamma distribution to agricultural data on yacon potatoes from a study in Peru. The following analysis employs the generalized odd log-logistic Weibull distribution to examine daily wind power generation data in Brazil. Monte Carlo simulations are used to eva- luate the accuracy of maximum likelihood estimates using a variety of measures. In order to determine the most suitable model, the research includes goodness-of-fit measures, diagnostics and residual analysis. Finally, the findings obtained utilizing various data sets demonstrated that the proposed models are a viable alternative to competing distributions.Neste trabalho, considerando a família de distribuições log-logística odd generalizada-G, foram propostas várias aplicações com diferentes dados reais usando modelos de regressão. As distribuições dessa família acomodam formas assimétricas, bimodais e de cauda pesada, mostrando flexibilidade quando comparadas a outras distribuições de geradores conhecidos. Com base na classe geradora de distribuições apresentada, foram introduzidos modelos de regressão com estruturas sistemáticas distintas, vinculando as variáveis explicativas por meio dos parâmetros da distribuição baseline e toda a modelagem computacional foi implementada usando o software R. As duas primeiras aplicações envolvem duas distribuições univariadas: Lindley e exponencial. A primeira usa a nova distribuição Lindley log-logística odd generalizada para avaliar dados sobre a taxa de vacinação primária completa de COVID-19 em condados do estado Americano do Texas. A segunda usa a distribuição exponencial log-logística odd generalizada para investigar casos semanais de dengue no Distrito Federal do Brasil. As outras aplicações se basearam nas conhecidas distribuições contínuas, gama e Weibull. A primeira aplica a distribuição gama log-logística odd generalizada a dados agrícolas sobre batatas yacon de um estudo no Peru. A análise seguinte emprega a distribuição Weibull log-logística odd generalizada para examinar os dados diários de geração de energia eólica no Brasil. Simulações de Monte Carlo são utilizadas para avaliar a acurácia das estimativas de máxima verosimilhança utilizando uma variedade de medidas. Para determinar o modelo mais adequado, a investigação inclui medidas de adequação, diagnóstico e análise de resíduos. Por fim, as conclusões obtidas com o uso de vários conjuntos de dados demonstraram que os modelos propostos são uma alternativa viável às distribuições concorrentes.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaLIMA, Maria do Carmo Soares deCORDEIRO, Gauss Moutinhohttp://lattes.cnpq.br/6438389503077193http://lattes.cnpq.br/6914758127566065http://lattes.cnpq.br/3268732497595112COSTA, Nicollas Stefan Soares da2024-05-10T16:47:15Z2024-05-10T16:47:15Z2024-04-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfCOSTA, Nicollas Stefan Soares da. Examining the generalized odd log-Logistic Family: a regression compilation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2024.https://repositorio.ufpe.br/handle/123456789/56266engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2024-05-11T05:26:18Zoai:repositorio.ufpe.br:123456789/56266Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212024-05-11T05:26:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Examining the generalized odd log-Logistic Family : a regression compilation |
| title |
Examining the generalized odd log-Logistic Family : a regression compilation |
| spellingShingle |
Examining the generalized odd log-Logistic Family : a regression compilation COSTA, Nicollas Stefan Soares da Diagnóstico Família generalizada odd log-logística Máxima Verossimilhança Modelo de regressão Simulação |
| title_short |
Examining the generalized odd log-Logistic Family : a regression compilation |
| title_full |
Examining the generalized odd log-Logistic Family : a regression compilation |
| title_fullStr |
Examining the generalized odd log-Logistic Family : a regression compilation |
| title_full_unstemmed |
Examining the generalized odd log-Logistic Family : a regression compilation |
| title_sort |
Examining the generalized odd log-Logistic Family : a regression compilation |
| author |
COSTA, Nicollas Stefan Soares da |
| author_facet |
COSTA, Nicollas Stefan Soares da |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
LIMA, Maria do Carmo Soares de CORDEIRO, Gauss Moutinho http://lattes.cnpq.br/6438389503077193 http://lattes.cnpq.br/6914758127566065 http://lattes.cnpq.br/3268732497595112 |
| dc.contributor.author.fl_str_mv |
COSTA, Nicollas Stefan Soares da |
| dc.subject.por.fl_str_mv |
Diagnóstico Família generalizada odd log-logística Máxima Verossimilhança Modelo de regressão Simulação |
| topic |
Diagnóstico Família generalizada odd log-logística Máxima Verossimilhança Modelo de regressão Simulação |
| description |
In this work, considering the family of distributions, generalized odd log-logistic-G, several applications have been proposed with different real data using regression models. The distri- butions of this family accommodate asymmetric, bimodal and heavy-tailed forms, showing flexibility when compared to other well-known generator distributions. Based on the generator family of distributions presented, regression models have been introduced with distinct sys- tematic structures, linking the explanatory variables through the parameters of the baseline distribution and all computational modeling is implemented using the R software. The first two applications involve two univariate distributions: Lindley and exponential. The first uses the novel generalized odd log-logistic Lindley distribution to evaluate data on the completed primary vaccination rate of COVID-19 in counties in the American state of Texas. The sec- ond uses the generalized odd log-logistic exponential distribution to investigate dengue fever weekly cases in the Federal District of Brazil. The other applications relied on the well-known continuous distributions, gamma, and Weibull distributions. The first applies the generalized odd log-logistic gamma distribution to agricultural data on yacon potatoes from a study in Peru. The following analysis employs the generalized odd log-logistic Weibull distribution to examine daily wind power generation data in Brazil. Monte Carlo simulations are used to eva- luate the accuracy of maximum likelihood estimates using a variety of measures. In order to determine the most suitable model, the research includes goodness-of-fit measures, diagnostics and residual analysis. Finally, the findings obtained utilizing various data sets demonstrated that the proposed models are a viable alternative to competing distributions. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-05-10T16:47:15Z 2024-05-10T16:47:15Z 2024-04-03 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
COSTA, Nicollas Stefan Soares da. Examining the generalized odd log-Logistic Family: a regression compilation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2024. https://repositorio.ufpe.br/handle/123456789/56266 |
| identifier_str_mv |
COSTA, Nicollas Stefan Soares da. Examining the generalized odd log-Logistic Family: a regression compilation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2024. |
| url |
https://repositorio.ufpe.br/handle/123456789/56266 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Estatistica |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Estatistica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042034347900928 |