Examining the generalized odd log-Logistic Family : a regression compilation

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: COSTA, Nicollas Stefan Soares da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/56266
Resumo: In this work, considering the family of distributions, generalized odd log-logistic-G, several applications have been proposed with different real data using regression models. The distri- butions of this family accommodate asymmetric, bimodal and heavy-tailed forms, showing flexibility when compared to other well-known generator distributions. Based on the generator family of distributions presented, regression models have been introduced with distinct sys- tematic structures, linking the explanatory variables through the parameters of the baseline distribution and all computational modeling is implemented using the R software. The first two applications involve two univariate distributions: Lindley and exponential. The first uses the novel generalized odd log-logistic Lindley distribution to evaluate data on the completed primary vaccination rate of COVID-19 in counties in the American state of Texas. The sec- ond uses the generalized odd log-logistic exponential distribution to investigate dengue fever weekly cases in the Federal District of Brazil. The other applications relied on the well-known continuous distributions, gamma, and Weibull distributions. The first applies the generalized odd log-logistic gamma distribution to agricultural data on yacon potatoes from a study in Peru. The following analysis employs the generalized odd log-logistic Weibull distribution to examine daily wind power generation data in Brazil. Monte Carlo simulations are used to eva- luate the accuracy of maximum likelihood estimates using a variety of measures. In order to determine the most suitable model, the research includes goodness-of-fit measures, diagnostics and residual analysis. Finally, the findings obtained utilizing various data sets demonstrated that the proposed models are a viable alternative to competing distributions.
id UFPE_44015ced5d7dc0c4b862ecc3ce0978ef
oai_identifier_str oai:repositorio.ufpe.br:123456789/56266
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Examining the generalized odd log-Logistic Family : a regression compilationDiagnósticoFamília generalizada odd log-logísticaMáxima VerossimilhançaModelo de regressãoSimulaçãoIn this work, considering the family of distributions, generalized odd log-logistic-G, several applications have been proposed with different real data using regression models. The distri- butions of this family accommodate asymmetric, bimodal and heavy-tailed forms, showing flexibility when compared to other well-known generator distributions. Based on the generator family of distributions presented, regression models have been introduced with distinct sys- tematic structures, linking the explanatory variables through the parameters of the baseline distribution and all computational modeling is implemented using the R software. The first two applications involve two univariate distributions: Lindley and exponential. The first uses the novel generalized odd log-logistic Lindley distribution to evaluate data on the completed primary vaccination rate of COVID-19 in counties in the American state of Texas. The sec- ond uses the generalized odd log-logistic exponential distribution to investigate dengue fever weekly cases in the Federal District of Brazil. The other applications relied on the well-known continuous distributions, gamma, and Weibull distributions. The first applies the generalized odd log-logistic gamma distribution to agricultural data on yacon potatoes from a study in Peru. The following analysis employs the generalized odd log-logistic Weibull distribution to examine daily wind power generation data in Brazil. Monte Carlo simulations are used to eva- luate the accuracy of maximum likelihood estimates using a variety of measures. In order to determine the most suitable model, the research includes goodness-of-fit measures, diagnostics and residual analysis. Finally, the findings obtained utilizing various data sets demonstrated that the proposed models are a viable alternative to competing distributions.Neste trabalho, considerando a família de distribuições log-logística odd generalizada-G, foram propostas várias aplicações com diferentes dados reais usando modelos de regressão. As distribuições dessa família acomodam formas assimétricas, bimodais e de cauda pesada, mostrando flexibilidade quando comparadas a outras distribuições de geradores conhecidos. Com base na classe geradora de distribuições apresentada, foram introduzidos modelos de regressão com estruturas sistemáticas distintas, vinculando as variáveis explicativas por meio dos parâmetros da distribuição baseline e toda a modelagem computacional foi implementada usando o software R. As duas primeiras aplicações envolvem duas distribuições univariadas: Lindley e exponencial. A primeira usa a nova distribuição Lindley log-logística odd generalizada para avaliar dados sobre a taxa de vacinação primária completa de COVID-19 em condados do estado Americano do Texas. A segunda usa a distribuição exponencial log-logística odd generalizada para investigar casos semanais de dengue no Distrito Federal do Brasil. As outras aplicações se basearam nas conhecidas distribuições contínuas, gama e Weibull. A primeira aplica a distribuição gama log-logística odd generalizada a dados agrícolas sobre batatas yacon de um estudo no Peru. A análise seguinte emprega a distribuição Weibull log-logística odd generalizada para examinar os dados diários de geração de energia eólica no Brasil. Simulações de Monte Carlo são utilizadas para avaliar a acurácia das estimativas de máxima verosimilhança utilizando uma variedade de medidas. Para determinar o modelo mais adequado, a investigação inclui medidas de adequação, diagnóstico e análise de resíduos. Por fim, as conclusões obtidas com o uso de vários conjuntos de dados demonstraram que os modelos propostos são uma alternativa viável às distribuições concorrentes.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaLIMA, Maria do Carmo Soares deCORDEIRO, Gauss Moutinhohttp://lattes.cnpq.br/6438389503077193http://lattes.cnpq.br/6914758127566065http://lattes.cnpq.br/3268732497595112COSTA, Nicollas Stefan Soares da2024-05-10T16:47:15Z2024-05-10T16:47:15Z2024-04-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfCOSTA, Nicollas Stefan Soares da. Examining the generalized odd log-Logistic Family: a regression compilation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2024.https://repositorio.ufpe.br/handle/123456789/56266engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2024-05-11T05:26:18Zoai:repositorio.ufpe.br:123456789/56266Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212024-05-11T05:26:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Examining the generalized odd log-Logistic Family : a regression compilation
title Examining the generalized odd log-Logistic Family : a regression compilation
spellingShingle Examining the generalized odd log-Logistic Family : a regression compilation
COSTA, Nicollas Stefan Soares da
Diagnóstico
Família generalizada odd log-logística
Máxima Verossimilhança
Modelo de regressão
Simulação
title_short Examining the generalized odd log-Logistic Family : a regression compilation
title_full Examining the generalized odd log-Logistic Family : a regression compilation
title_fullStr Examining the generalized odd log-Logistic Family : a regression compilation
title_full_unstemmed Examining the generalized odd log-Logistic Family : a regression compilation
title_sort Examining the generalized odd log-Logistic Family : a regression compilation
author COSTA, Nicollas Stefan Soares da
author_facet COSTA, Nicollas Stefan Soares da
author_role author
dc.contributor.none.fl_str_mv LIMA, Maria do Carmo Soares de
CORDEIRO, Gauss Moutinho
http://lattes.cnpq.br/6438389503077193
http://lattes.cnpq.br/6914758127566065
http://lattes.cnpq.br/3268732497595112
dc.contributor.author.fl_str_mv COSTA, Nicollas Stefan Soares da
dc.subject.por.fl_str_mv Diagnóstico
Família generalizada odd log-logística
Máxima Verossimilhança
Modelo de regressão
Simulação
topic Diagnóstico
Família generalizada odd log-logística
Máxima Verossimilhança
Modelo de regressão
Simulação
description In this work, considering the family of distributions, generalized odd log-logistic-G, several applications have been proposed with different real data using regression models. The distri- butions of this family accommodate asymmetric, bimodal and heavy-tailed forms, showing flexibility when compared to other well-known generator distributions. Based on the generator family of distributions presented, regression models have been introduced with distinct sys- tematic structures, linking the explanatory variables through the parameters of the baseline distribution and all computational modeling is implemented using the R software. The first two applications involve two univariate distributions: Lindley and exponential. The first uses the novel generalized odd log-logistic Lindley distribution to evaluate data on the completed primary vaccination rate of COVID-19 in counties in the American state of Texas. The sec- ond uses the generalized odd log-logistic exponential distribution to investigate dengue fever weekly cases in the Federal District of Brazil. The other applications relied on the well-known continuous distributions, gamma, and Weibull distributions. The first applies the generalized odd log-logistic gamma distribution to agricultural data on yacon potatoes from a study in Peru. The following analysis employs the generalized odd log-logistic Weibull distribution to examine daily wind power generation data in Brazil. Monte Carlo simulations are used to eva- luate the accuracy of maximum likelihood estimates using a variety of measures. In order to determine the most suitable model, the research includes goodness-of-fit measures, diagnostics and residual analysis. Finally, the findings obtained utilizing various data sets demonstrated that the proposed models are a viable alternative to competing distributions.
publishDate 2024
dc.date.none.fl_str_mv 2024-05-10T16:47:15Z
2024-05-10T16:47:15Z
2024-04-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv COSTA, Nicollas Stefan Soares da. Examining the generalized odd log-Logistic Family: a regression compilation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2024.
https://repositorio.ufpe.br/handle/123456789/56266
identifier_str_mv COSTA, Nicollas Stefan Soares da. Examining the generalized odd log-Logistic Family: a regression compilation. 2024. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2024.
url https://repositorio.ufpe.br/handle/123456789/56266
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042034347900928