Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: MATOS JÚNIOR, Rubens de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/18702
Resumo: Cloud computing paradigm is able to reduce costs of acquisition and maintenance of computer systems, and enables the balanced management of resources according to the demand. Hierarchical and composite analytical models are suitable for describing performance and dependability of cloud computing systems in a concise manner, dealing with the huge number of components which constitute such kind of system. That approach uses distinct sub-models for each system level and the measures obtained in each sub-model are integrated to compute the measures for the whole system. Identification of bottlenecks in hierarchical models might be difficult yet, due to the large number of parameters and their distribution among distinct modeling levels and formalisms. This thesis proposes methods for evaluation and detection of bottlenecks of cloud computing systems. The methodology is based on hierarchical modeling and parametric sensitivity analysis techniques tailored for such a scenario. This research introduces methods to build unified sensitivity rankings when distinct modeling formalisms are combined. These methods are embedded in the Mercury software tool, providing an automated sensitivity analysis framework for supporting the process. Distinct case studies helped in testing the methodology, encompassing hardware and software aspects of cloud systems, from basic infrastructure level to applications that are hosted in private clouds. The case studies showed that the proposed approach is helpful for guiding cloud systems designers and administrators in the decision-making process, especially for tune-up and architectural improvements. It is possible to employ the methodology through an optimization algorithm proposed here, called Sensitive GRASP. This algorithm aims at optimizing performance and dependability of computing systems that cannot stand the exploration of all architectural and configuration possibilities to find the best quality of service. This is especially useful for cloud-hosted services and their complex underlying infrastructures.
id UFPE_4f81d81576d07e6c8494711fd97b690a
oai_identifier_str oai:repositorio.ufpe.br:123456789/18702
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.Computação em nuvem. Avaliação de desempenho. Dependabilidade. Modelos analíticos. Análise de sensibilidade. Cadeiasde Markov. Otimização.Cloud computing. Performance evaluation. Dependability. Analytical modeling. Sensitivity analysis. Markov chains. Optimization.Cloud computing paradigm is able to reduce costs of acquisition and maintenance of computer systems, and enables the balanced management of resources according to the demand. Hierarchical and composite analytical models are suitable for describing performance and dependability of cloud computing systems in a concise manner, dealing with the huge number of components which constitute such kind of system. That approach uses distinct sub-models for each system level and the measures obtained in each sub-model are integrated to compute the measures for the whole system. Identification of bottlenecks in hierarchical models might be difficult yet, due to the large number of parameters and their distribution among distinct modeling levels and formalisms. This thesis proposes methods for evaluation and detection of bottlenecks of cloud computing systems. The methodology is based on hierarchical modeling and parametric sensitivity analysis techniques tailored for such a scenario. This research introduces methods to build unified sensitivity rankings when distinct modeling formalisms are combined. These methods are embedded in the Mercury software tool, providing an automated sensitivity analysis framework for supporting the process. Distinct case studies helped in testing the methodology, encompassing hardware and software aspects of cloud systems, from basic infrastructure level to applications that are hosted in private clouds. The case studies showed that the proposed approach is helpful for guiding cloud systems designers and administrators in the decision-making process, especially for tune-up and architectural improvements. It is possible to employ the methodology through an optimization algorithm proposed here, called Sensitive GRASP. This algorithm aims at optimizing performance and dependability of computing systems that cannot stand the exploration of all architectural and configuration possibilities to find the best quality of service. This is especially useful for cloud-hosted services and their complex underlying infrastructures.CAPESO paradigma de computação em nuvem é capaz de reduzir os custos de aquisição e manutenção de sistemas computacionais e permitir uma gestão equilibrada dos recursos de acordo com a demanda. Modelos analíticos hierárquicos e compostos são adequados para descrever de forma concisa o desempenho e a confiabilidade de sistemas de computação em nuvem, lidando com o grande número de componentes que constituem esse tipo de sistema. Esta abordagem usa sub-modelos distintos para cada nível do sistema e as medidas obtidas em cada sub-modelo são usadas para calcular as métricas desejadas para o sistema como um todo. A identificação de gargalos em modelos hierárquicos pode ser difícil, no entanto, devido ao grande número de parâmetros e sua distribuição entre os distintos formalismos e níveis de modelagem. Esta tese propõe métodos para a avaliação e detecção de gargalos de sistemas de computação em nuvem. A abordagem baseia-se na modelagem hierárquica e técnicas de análise de sensibilidade paramétrica adaptadas para tal cenário. Esta pesquisa apresenta métodos para construir rankings unificados de sensibilidade quando formalismos de modelagem distintos são combinados. Estes métodos são incorporados no software Mercury, fornecendo uma estrutura automatizada de apoio ao processo. Uma metodologia de suporte a essa abordagem foi proposta e testada ao longo de estudos de casos distintos, abrangendo aspectos de hardware e software de sistemas IaaS (Infraestrutura como um serviço), desde o nível de infraestrutura básica até os aplicativos hospedados em nuvens privadas. Os estudos de caso mostraram que a abordagem proposta é útil para orientar os projetistas e administradores de infraestruturas de nuvem no processo de tomada de decisões, especialmente para ajustes eventuais e melhorias arquiteturais. A metodologia também pode ser aplicada por meio de um algoritmo de otimização proposto aqui, chamado Sensitive GRASP. Este algoritmo tem o objetivo de otimizar o desempenho e a confiabilidade de sistemas em cenários onde não é possível explorar todas as possibilidades arquiteturais e de configuração para encontrar a melhor qualidade de serviço. Isto é especialmente útil para os serviços hospedados na nuvem e suas complexasUniversidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoMACIEL, Paulo Romero Martinshttp://lattes.cnpq.br/2244198352280617http://lattes.cnpq.br/8382158780043575MATOS JÚNIOR, Rubens de Souza2017-05-04T17:58:30Z2017-05-04T17:58:30Z2016-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/18702engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T19:34:07Zoai:repositorio.ufpe.br:123456789/18702Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T19:34:07Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.
title Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.
spellingShingle Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.
MATOS JÚNIOR, Rubens de Souza
Computação em nuvem. Avaliação de desempenho. Dependabilidade. Modelos analíticos. Análise de sensibilidade. Cadeiasde Markov. Otimização.
Cloud computing. Performance evaluation. Dependability. Analytical modeling. Sensitivity analysis. Markov chains. Optimization.
title_short Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.
title_full Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.
title_fullStr Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.
title_full_unstemmed Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.
title_sort Identification of Availability and Performance Bottlenecks in Cloud Computing Systems: an approach based on hierarchical models and sensitivity analysis.
author MATOS JÚNIOR, Rubens de Souza
author_facet MATOS JÚNIOR, Rubens de Souza
author_role author
dc.contributor.none.fl_str_mv MACIEL, Paulo Romero Martins
http://lattes.cnpq.br/2244198352280617
http://lattes.cnpq.br/8382158780043575
dc.contributor.author.fl_str_mv MATOS JÚNIOR, Rubens de Souza
dc.subject.por.fl_str_mv Computação em nuvem. Avaliação de desempenho. Dependabilidade. Modelos analíticos. Análise de sensibilidade. Cadeiasde Markov. Otimização.
Cloud computing. Performance evaluation. Dependability. Analytical modeling. Sensitivity analysis. Markov chains. Optimization.
topic Computação em nuvem. Avaliação de desempenho. Dependabilidade. Modelos analíticos. Análise de sensibilidade. Cadeiasde Markov. Otimização.
Cloud computing. Performance evaluation. Dependability. Analytical modeling. Sensitivity analysis. Markov chains. Optimization.
description Cloud computing paradigm is able to reduce costs of acquisition and maintenance of computer systems, and enables the balanced management of resources according to the demand. Hierarchical and composite analytical models are suitable for describing performance and dependability of cloud computing systems in a concise manner, dealing with the huge number of components which constitute such kind of system. That approach uses distinct sub-models for each system level and the measures obtained in each sub-model are integrated to compute the measures for the whole system. Identification of bottlenecks in hierarchical models might be difficult yet, due to the large number of parameters and their distribution among distinct modeling levels and formalisms. This thesis proposes methods for evaluation and detection of bottlenecks of cloud computing systems. The methodology is based on hierarchical modeling and parametric sensitivity analysis techniques tailored for such a scenario. This research introduces methods to build unified sensitivity rankings when distinct modeling formalisms are combined. These methods are embedded in the Mercury software tool, providing an automated sensitivity analysis framework for supporting the process. Distinct case studies helped in testing the methodology, encompassing hardware and software aspects of cloud systems, from basic infrastructure level to applications that are hosted in private clouds. The case studies showed that the proposed approach is helpful for guiding cloud systems designers and administrators in the decision-making process, especially for tune-up and architectural improvements. It is possible to employ the methodology through an optimization algorithm proposed here, called Sensitive GRASP. This algorithm aims at optimizing performance and dependability of computing systems that cannot stand the exploration of all architectural and configuration possibilities to find the best quality of service. This is especially useful for cloud-hosted services and their complex underlying infrastructures.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-01
2017-05-04T17:58:30Z
2017-05-04T17:58:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/18702
url https://repositorio.ufpe.br/handle/123456789/18702
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041995726749696