Development of a deep-learning based system for disease symptoms detection over crop leaves images

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: BARROS, Mariana da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
CNN
Link de acesso: https://repositorio.ufpe.br/handle/123456789/44958
Resumo: Family farming represents a critical segment of Brazilian agriculture, involving more than 5 million properties and generating 74% of rural jobs in the country. Yield losses caused by crop diseases and pests can be devastating for small-scale producers. However, successful disease control requires correct identification, which challenges smallholders, who often lack technical assistance. The present work proposes a system that alerts smallholder farmers and phytopathology experts about possible crop disease outbreaks, enabling a faster diagnosis and intervention. To this extent, we detect disease symptoms in images of plant leaves taken by farmers directly in the field using a mobile phone app developed for this purpose. The implemented module is part of a service platform connecting producers and experts, designed in partnership with phytopathology professionals from the Federal Rural University of Pernambuco (UFRPE). The work uses deep learning and Convolutional Neural Networks to perform the image classification. The classification experiments were applied over a dataset composed of leaf images of grape crops cultivated in the state of Pernambuco, whose image collection was also part of the present work. Therefore, pictures taken under field conditions sometimes present low quality, which decreases the classification performance. Thus, we also classify the images regarding their quality, to exclude challenging images from disease detection and reduce the number of erroneously classified images entering the database. The multi-label technique is employed in this scenario, enabling a single neural network model to classify whether a leaf picture reveals crop disease symptoms and whether they present good enough quality to do so reliably. The multi-label mechanism is also a promising approach to include additional picture properties in the future, like disease agents. The developed classification system achieves a recall value of 97.6% for symptom detection and a precision value of 94.8% for image quality classification.
id UFPE_6b6e101deecca1cd9e50ee1718a6f769
oai_identifier_str oai:repositorio.ufpe.br:123456789/44958
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Development of a deep-learning based system for disease symptoms detection over crop leaves imagesEngenharia da computaçãoDeep learningCNNMulti-labelDoenças de plantasFamily farming represents a critical segment of Brazilian agriculture, involving more than 5 million properties and generating 74% of rural jobs in the country. Yield losses caused by crop diseases and pests can be devastating for small-scale producers. However, successful disease control requires correct identification, which challenges smallholders, who often lack technical assistance. The present work proposes a system that alerts smallholder farmers and phytopathology experts about possible crop disease outbreaks, enabling a faster diagnosis and intervention. To this extent, we detect disease symptoms in images of plant leaves taken by farmers directly in the field using a mobile phone app developed for this purpose. The implemented module is part of a service platform connecting producers and experts, designed in partnership with phytopathology professionals from the Federal Rural University of Pernambuco (UFRPE). The work uses deep learning and Convolutional Neural Networks to perform the image classification. The classification experiments were applied over a dataset composed of leaf images of grape crops cultivated in the state of Pernambuco, whose image collection was also part of the present work. Therefore, pictures taken under field conditions sometimes present low quality, which decreases the classification performance. Thus, we also classify the images regarding their quality, to exclude challenging images from disease detection and reduce the number of erroneously classified images entering the database. The multi-label technique is employed in this scenario, enabling a single neural network model to classify whether a leaf picture reveals crop disease symptoms and whether they present good enough quality to do so reliably. The multi-label mechanism is also a promising approach to include additional picture properties in the future, like disease agents. The developed classification system achieves a recall value of 97.6% for symptom detection and a precision value of 94.8% for image quality classification.CAPESAgricultura familiar representa um segmento crítico da agricultura brasileira, envolvendo mais de 5 milhões de propriedades e gerando 74% dos empregos rurais no país. As perdas de rendimento causadas por pragas e doenças na colheita podem ser devastadoras para os pe- quenos produtores. No entanto, o controle de doenças bem-sucedido requer uma classificação correta, o que desafia os pequenos proprietários, que muitas vezes carecem de assistência téc- nica. O presente trabalho propõe um sistema que alerta pequenos produtores e especialistas em fitopatologia sobre possíveis surtos de doenças em plantas, permitindo um diagnóstico e inter- venção mais rápidos. Nesse sentido, nós detectamos sintomas de doenças em imagens de folhas de plantas tiradas diretamente por agricultores no campo usando um aplicativo de celular de- senvolvido com esse propósito. O módulo implementado é parte de uma plataforma de serviços que conecta produtores e especialistas, projetado em parceria com profissionais de fitopato- logia da Universidade Federal Rural de Pernambuco (UFRPE). O trabalho usa aprendizagem profunda (“deep learning”) e redes neurais convolucionais (CNNs) para realizar a classificação das imagens. Os experimentos de classificação foram aplicados sobre um conjunto de dados composto por imagens de folhas de videira cultivadas no estado de Pernambuco, cuja coleta também foi parte do presente trabalho. Portanto, algumas imagens coletadas sob as condições do campo apresentam baixa qualidade, o que diminui o desempenho da classificação. Assim, nós também classificamos as imagens com relação à sua qualidade, para excluir imagens de- safiadoras da detecção de doenças e reduzir o número de fotos classificadas erroneamente entrando na base de dados. A técnica de “multi-label” é aplicada neste cenário, permitindo a um único modelo classificar se as imagens mostram sintomas e se elas apresentam qualidade suficiente para que isso seja feito de maneira confiável. O mecanismo “multi-label” também é uma abordagem promissora para incluir futuramente propriedades adicionais da imagem, como agentes causadores de doenças. O sistema de classificação desenvolvido alcança um valor de “recall” de 97.6% para detecção de sintomas e um valor de precisão de 94.8% para classificação de qualidade das imagens.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoBLAWID, Stefan Michaelhttp://lattes.cnpq.br/0171498393282139http://lattes.cnpq.br/3740757562716147BARROS, Mariana da Silva2022-07-04T16:33:07Z2022-07-04T16:33:07Z2021-12-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfBARROS, Mariana da Silva. Development of a deep-learning based system for disease symptoms detection over crop leaves images. 2021. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/44958engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2022-07-05T05:18:49Zoai:repositorio.ufpe.br:123456789/44958Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-07-05T05:18:49Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Development of a deep-learning based system for disease symptoms detection over crop leaves images
title Development of a deep-learning based system for disease symptoms detection over crop leaves images
spellingShingle Development of a deep-learning based system for disease symptoms detection over crop leaves images
BARROS, Mariana da Silva
Engenharia da computação
Deep learning
CNN
Multi-label
Doenças de plantas
title_short Development of a deep-learning based system for disease symptoms detection over crop leaves images
title_full Development of a deep-learning based system for disease symptoms detection over crop leaves images
title_fullStr Development of a deep-learning based system for disease symptoms detection over crop leaves images
title_full_unstemmed Development of a deep-learning based system for disease symptoms detection over crop leaves images
title_sort Development of a deep-learning based system for disease symptoms detection over crop leaves images
author BARROS, Mariana da Silva
author_facet BARROS, Mariana da Silva
author_role author
dc.contributor.none.fl_str_mv BLAWID, Stefan Michael
http://lattes.cnpq.br/0171498393282139
http://lattes.cnpq.br/3740757562716147
dc.contributor.author.fl_str_mv BARROS, Mariana da Silva
dc.subject.por.fl_str_mv Engenharia da computação
Deep learning
CNN
Multi-label
Doenças de plantas
topic Engenharia da computação
Deep learning
CNN
Multi-label
Doenças de plantas
description Family farming represents a critical segment of Brazilian agriculture, involving more than 5 million properties and generating 74% of rural jobs in the country. Yield losses caused by crop diseases and pests can be devastating for small-scale producers. However, successful disease control requires correct identification, which challenges smallholders, who often lack technical assistance. The present work proposes a system that alerts smallholder farmers and phytopathology experts about possible crop disease outbreaks, enabling a faster diagnosis and intervention. To this extent, we detect disease symptoms in images of plant leaves taken by farmers directly in the field using a mobile phone app developed for this purpose. The implemented module is part of a service platform connecting producers and experts, designed in partnership with phytopathology professionals from the Federal Rural University of Pernambuco (UFRPE). The work uses deep learning and Convolutional Neural Networks to perform the image classification. The classification experiments were applied over a dataset composed of leaf images of grape crops cultivated in the state of Pernambuco, whose image collection was also part of the present work. Therefore, pictures taken under field conditions sometimes present low quality, which decreases the classification performance. Thus, we also classify the images regarding their quality, to exclude challenging images from disease detection and reduce the number of erroneously classified images entering the database. The multi-label technique is employed in this scenario, enabling a single neural network model to classify whether a leaf picture reveals crop disease symptoms and whether they present good enough quality to do so reliably. The multi-label mechanism is also a promising approach to include additional picture properties in the future, like disease agents. The developed classification system achieves a recall value of 97.6% for symptom detection and a precision value of 94.8% for image quality classification.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-22
2022-07-04T16:33:07Z
2022-07-04T16:33:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BARROS, Mariana da Silva. Development of a deep-learning based system for disease symptoms detection over crop leaves images. 2021. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.
https://repositorio.ufpe.br/handle/123456789/44958
identifier_str_mv BARROS, Mariana da Silva. Development of a deep-learning based system for disease symptoms detection over crop leaves images. 2021. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.
url https://repositorio.ufpe.br/handle/123456789/44958
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042095472541696