Development of a deep-learning based system for disease symptoms detection over crop leaves images
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/44958 |
Resumo: | Family farming represents a critical segment of Brazilian agriculture, involving more than 5 million properties and generating 74% of rural jobs in the country. Yield losses caused by crop diseases and pests can be devastating for small-scale producers. However, successful disease control requires correct identification, which challenges smallholders, who often lack technical assistance. The present work proposes a system that alerts smallholder farmers and phytopathology experts about possible crop disease outbreaks, enabling a faster diagnosis and intervention. To this extent, we detect disease symptoms in images of plant leaves taken by farmers directly in the field using a mobile phone app developed for this purpose. The implemented module is part of a service platform connecting producers and experts, designed in partnership with phytopathology professionals from the Federal Rural University of Pernambuco (UFRPE). The work uses deep learning and Convolutional Neural Networks to perform the image classification. The classification experiments were applied over a dataset composed of leaf images of grape crops cultivated in the state of Pernambuco, whose image collection was also part of the present work. Therefore, pictures taken under field conditions sometimes present low quality, which decreases the classification performance. Thus, we also classify the images regarding their quality, to exclude challenging images from disease detection and reduce the number of erroneously classified images entering the database. The multi-label technique is employed in this scenario, enabling a single neural network model to classify whether a leaf picture reveals crop disease symptoms and whether they present good enough quality to do so reliably. The multi-label mechanism is also a promising approach to include additional picture properties in the future, like disease agents. The developed classification system achieves a recall value of 97.6% for symptom detection and a precision value of 94.8% for image quality classification. |
| id |
UFPE_6b6e101deecca1cd9e50ee1718a6f769 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/44958 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Development of a deep-learning based system for disease symptoms detection over crop leaves imagesEngenharia da computaçãoDeep learningCNNMulti-labelDoenças de plantasFamily farming represents a critical segment of Brazilian agriculture, involving more than 5 million properties and generating 74% of rural jobs in the country. Yield losses caused by crop diseases and pests can be devastating for small-scale producers. However, successful disease control requires correct identification, which challenges smallholders, who often lack technical assistance. The present work proposes a system that alerts smallholder farmers and phytopathology experts about possible crop disease outbreaks, enabling a faster diagnosis and intervention. To this extent, we detect disease symptoms in images of plant leaves taken by farmers directly in the field using a mobile phone app developed for this purpose. The implemented module is part of a service platform connecting producers and experts, designed in partnership with phytopathology professionals from the Federal Rural University of Pernambuco (UFRPE). The work uses deep learning and Convolutional Neural Networks to perform the image classification. The classification experiments were applied over a dataset composed of leaf images of grape crops cultivated in the state of Pernambuco, whose image collection was also part of the present work. Therefore, pictures taken under field conditions sometimes present low quality, which decreases the classification performance. Thus, we also classify the images regarding their quality, to exclude challenging images from disease detection and reduce the number of erroneously classified images entering the database. The multi-label technique is employed in this scenario, enabling a single neural network model to classify whether a leaf picture reveals crop disease symptoms and whether they present good enough quality to do so reliably. The multi-label mechanism is also a promising approach to include additional picture properties in the future, like disease agents. The developed classification system achieves a recall value of 97.6% for symptom detection and a precision value of 94.8% for image quality classification.CAPESAgricultura familiar representa um segmento crítico da agricultura brasileira, envolvendo mais de 5 milhões de propriedades e gerando 74% dos empregos rurais no país. As perdas de rendimento causadas por pragas e doenças na colheita podem ser devastadoras para os pe- quenos produtores. No entanto, o controle de doenças bem-sucedido requer uma classificação correta, o que desafia os pequenos proprietários, que muitas vezes carecem de assistência téc- nica. O presente trabalho propõe um sistema que alerta pequenos produtores e especialistas em fitopatologia sobre possíveis surtos de doenças em plantas, permitindo um diagnóstico e inter- venção mais rápidos. Nesse sentido, nós detectamos sintomas de doenças em imagens de folhas de plantas tiradas diretamente por agricultores no campo usando um aplicativo de celular de- senvolvido com esse propósito. O módulo implementado é parte de uma plataforma de serviços que conecta produtores e especialistas, projetado em parceria com profissionais de fitopato- logia da Universidade Federal Rural de Pernambuco (UFRPE). O trabalho usa aprendizagem profunda (“deep learning”) e redes neurais convolucionais (CNNs) para realizar a classificação das imagens. Os experimentos de classificação foram aplicados sobre um conjunto de dados composto por imagens de folhas de videira cultivadas no estado de Pernambuco, cuja coleta também foi parte do presente trabalho. Portanto, algumas imagens coletadas sob as condições do campo apresentam baixa qualidade, o que diminui o desempenho da classificação. Assim, nós também classificamos as imagens com relação à sua qualidade, para excluir imagens de- safiadoras da detecção de doenças e reduzir o número de fotos classificadas erroneamente entrando na base de dados. A técnica de “multi-label” é aplicada neste cenário, permitindo a um único modelo classificar se as imagens mostram sintomas e se elas apresentam qualidade suficiente para que isso seja feito de maneira confiável. O mecanismo “multi-label” também é uma abordagem promissora para incluir futuramente propriedades adicionais da imagem, como agentes causadores de doenças. O sistema de classificação desenvolvido alcança um valor de “recall” de 97.6% para detecção de sintomas e um valor de precisão de 94.8% para classificação de qualidade das imagens.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoBLAWID, Stefan Michaelhttp://lattes.cnpq.br/0171498393282139http://lattes.cnpq.br/3740757562716147BARROS, Mariana da Silva2022-07-04T16:33:07Z2022-07-04T16:33:07Z2021-12-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfBARROS, Mariana da Silva. Development of a deep-learning based system for disease symptoms detection over crop leaves images. 2021. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/44958engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2022-07-05T05:18:49Zoai:repositorio.ufpe.br:123456789/44958Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-07-05T05:18:49Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Development of a deep-learning based system for disease symptoms detection over crop leaves images |
| title |
Development of a deep-learning based system for disease symptoms detection over crop leaves images |
| spellingShingle |
Development of a deep-learning based system for disease symptoms detection over crop leaves images BARROS, Mariana da Silva Engenharia da computação Deep learning CNN Multi-label Doenças de plantas |
| title_short |
Development of a deep-learning based system for disease symptoms detection over crop leaves images |
| title_full |
Development of a deep-learning based system for disease symptoms detection over crop leaves images |
| title_fullStr |
Development of a deep-learning based system for disease symptoms detection over crop leaves images |
| title_full_unstemmed |
Development of a deep-learning based system for disease symptoms detection over crop leaves images |
| title_sort |
Development of a deep-learning based system for disease symptoms detection over crop leaves images |
| author |
BARROS, Mariana da Silva |
| author_facet |
BARROS, Mariana da Silva |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
BLAWID, Stefan Michael http://lattes.cnpq.br/0171498393282139 http://lattes.cnpq.br/3740757562716147 |
| dc.contributor.author.fl_str_mv |
BARROS, Mariana da Silva |
| dc.subject.por.fl_str_mv |
Engenharia da computação Deep learning CNN Multi-label Doenças de plantas |
| topic |
Engenharia da computação Deep learning CNN Multi-label Doenças de plantas |
| description |
Family farming represents a critical segment of Brazilian agriculture, involving more than 5 million properties and generating 74% of rural jobs in the country. Yield losses caused by crop diseases and pests can be devastating for small-scale producers. However, successful disease control requires correct identification, which challenges smallholders, who often lack technical assistance. The present work proposes a system that alerts smallholder farmers and phytopathology experts about possible crop disease outbreaks, enabling a faster diagnosis and intervention. To this extent, we detect disease symptoms in images of plant leaves taken by farmers directly in the field using a mobile phone app developed for this purpose. The implemented module is part of a service platform connecting producers and experts, designed in partnership with phytopathology professionals from the Federal Rural University of Pernambuco (UFRPE). The work uses deep learning and Convolutional Neural Networks to perform the image classification. The classification experiments were applied over a dataset composed of leaf images of grape crops cultivated in the state of Pernambuco, whose image collection was also part of the present work. Therefore, pictures taken under field conditions sometimes present low quality, which decreases the classification performance. Thus, we also classify the images regarding their quality, to exclude challenging images from disease detection and reduce the number of erroneously classified images entering the database. The multi-label technique is employed in this scenario, enabling a single neural network model to classify whether a leaf picture reveals crop disease symptoms and whether they present good enough quality to do so reliably. The multi-label mechanism is also a promising approach to include additional picture properties in the future, like disease agents. The developed classification system achieves a recall value of 97.6% for symptom detection and a precision value of 94.8% for image quality classification. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-12-22 2022-07-04T16:33:07Z 2022-07-04T16:33:07Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
BARROS, Mariana da Silva. Development of a deep-learning based system for disease symptoms detection over crop leaves images. 2021. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021. https://repositorio.ufpe.br/handle/123456789/44958 |
| identifier_str_mv |
BARROS, Mariana da Silva. Development of a deep-learning based system for disease symptoms detection over crop leaves images. 2021. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021. |
| url |
https://repositorio.ufpe.br/handle/123456789/44958 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042095472541696 |