Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais
| Ano de defesa: | 2008 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/2047 |
Resumo: | De forma geral, as abordagens descritas na literatura utilizam apenas a própria série para realizar a previsão, descartando a série de resíduos proveniente da diferença entre os dados reais da série e a previsão do modelo. Os métodos tradicionais de inteligência artificial não tratam a série de resíduos, considerando assim que essa série tenha o comportamento de um ruído branco, contendo pouca ou nenhuma informação relevante. Estudos realizados em torno das séries de resíduos, geradas pelo Método Time-lag Added Evolutionary Forecasting Method(TAEF), possibilitaram a constatação da não existência de características de ruído branco, mas conjuntos de padrões que detém informações relevantes que podem ser captadas pelo método. Com base nesses estudos e inspirado na Teoria da Perturbação, um conceito já comumente usado em outros ramos da ciência, o Método Perturbative Time-lag Added Evolutionary Forecasting Method (Método P-TAEF) foi desenvolvido para tratamento e previsão das séries residuais. A Teoria da Perturbação é semelhante a uma expansão de potências, como na expansão de Taylor, onde cada termo acrescentado à expansão introduz um fator de correção, que converge para a solução real do problema. Vários experimentos foram realizados com o Método P-TAEF com séries temporais com diferentes características. Foram utilizadas séries de natureza e complexidade distintas, de tal modo a comprovar a eficiência do método proposto. Foi testado um conjunto de sete séries, sendo uma artificial (série do Mapa de Hénon), duas de fenômenos da natureza (série das Manchas Solares e série de Medidas do Brilho de uma Estrela) e quatro séries econômico-financeiras (Índice Dow Jones Industrial Average, Índice Nasdaq,´ Índice S&P500 e valores de Fechamento das Ações da Petrobras (PetrobrasON)). Os experimentos foram comparados com técnicas tradicionais de IA encontradas na literatura e com o Método TAEF |
| id |
UFPE_71238741ff72e48c1da6a779d91b58d2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2047 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporaisPrevisão de Séries TemporaisTeoria da PerturbaçãoRedes Neurais ArtificiaisAlgoritmos GenéticosSistemas Híbridos InteligentesDe forma geral, as abordagens descritas na literatura utilizam apenas a própria série para realizar a previsão, descartando a série de resíduos proveniente da diferença entre os dados reais da série e a previsão do modelo. Os métodos tradicionais de inteligência artificial não tratam a série de resíduos, considerando assim que essa série tenha o comportamento de um ruído branco, contendo pouca ou nenhuma informação relevante. Estudos realizados em torno das séries de resíduos, geradas pelo Método Time-lag Added Evolutionary Forecasting Method(TAEF), possibilitaram a constatação da não existência de características de ruído branco, mas conjuntos de padrões que detém informações relevantes que podem ser captadas pelo método. Com base nesses estudos e inspirado na Teoria da Perturbação, um conceito já comumente usado em outros ramos da ciência, o Método Perturbative Time-lag Added Evolutionary Forecasting Method (Método P-TAEF) foi desenvolvido para tratamento e previsão das séries residuais. A Teoria da Perturbação é semelhante a uma expansão de potências, como na expansão de Taylor, onde cada termo acrescentado à expansão introduz um fator de correção, que converge para a solução real do problema. Vários experimentos foram realizados com o Método P-TAEF com séries temporais com diferentes características. Foram utilizadas séries de natureza e complexidade distintas, de tal modo a comprovar a eficiência do método proposto. Foi testado um conjunto de sete séries, sendo uma artificial (série do Mapa de Hénon), duas de fenômenos da natureza (série das Manchas Solares e série de Medidas do Brilho de uma Estrela) e quatro séries econômico-financeiras (Índice Dow Jones Industrial Average, Índice Nasdaq,´ Índice S&P500 e valores de Fechamento das Ações da Petrobras (PetrobrasON)). Os experimentos foram comparados com técnicas tradicionais de IA encontradas na literatura e com o Método TAEFConselho Nacional de Desenvolvimento Científico e TecnológicoUniversidade Federal de PernambucoCrispim Vasconcelos, Germano Salgado Gomes de Mattos Neto, Paulo2014-06-12T15:54:09Z2014-06-12T15:54:09Z2008-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSalgado Gomes de Mattos Neto, Paulo; Crispim Vasconcelos, Germano. Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.https://repositorio.ufpe.br/handle/123456789/2047porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T05:49:07Zoai:repositorio.ufpe.br:123456789/2047Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:49:07Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais |
| title |
Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais |
| spellingShingle |
Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais Salgado Gomes de Mattos Neto, Paulo Previsão de Séries Temporais Teoria da Perturbação Redes Neurais Artificiais Algoritmos Genéticos Sistemas Híbridos Inteligentes |
| title_short |
Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais |
| title_full |
Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais |
| title_fullStr |
Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais |
| title_full_unstemmed |
Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais |
| title_sort |
Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais |
| author |
Salgado Gomes de Mattos Neto, Paulo |
| author_facet |
Salgado Gomes de Mattos Neto, Paulo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Crispim Vasconcelos, Germano |
| dc.contributor.author.fl_str_mv |
Salgado Gomes de Mattos Neto, Paulo |
| dc.subject.por.fl_str_mv |
Previsão de Séries Temporais Teoria da Perturbação Redes Neurais Artificiais Algoritmos Genéticos Sistemas Híbridos Inteligentes |
| topic |
Previsão de Séries Temporais Teoria da Perturbação Redes Neurais Artificiais Algoritmos Genéticos Sistemas Híbridos Inteligentes |
| description |
De forma geral, as abordagens descritas na literatura utilizam apenas a própria série para realizar a previsão, descartando a série de resíduos proveniente da diferença entre os dados reais da série e a previsão do modelo. Os métodos tradicionais de inteligência artificial não tratam a série de resíduos, considerando assim que essa série tenha o comportamento de um ruído branco, contendo pouca ou nenhuma informação relevante. Estudos realizados em torno das séries de resíduos, geradas pelo Método Time-lag Added Evolutionary Forecasting Method(TAEF), possibilitaram a constatação da não existência de características de ruído branco, mas conjuntos de padrões que detém informações relevantes que podem ser captadas pelo método. Com base nesses estudos e inspirado na Teoria da Perturbação, um conceito já comumente usado em outros ramos da ciência, o Método Perturbative Time-lag Added Evolutionary Forecasting Method (Método P-TAEF) foi desenvolvido para tratamento e previsão das séries residuais. A Teoria da Perturbação é semelhante a uma expansão de potências, como na expansão de Taylor, onde cada termo acrescentado à expansão introduz um fator de correção, que converge para a solução real do problema. Vários experimentos foram realizados com o Método P-TAEF com séries temporais com diferentes características. Foram utilizadas séries de natureza e complexidade distintas, de tal modo a comprovar a eficiência do método proposto. Foi testado um conjunto de sete séries, sendo uma artificial (série do Mapa de Hénon), duas de fenômenos da natureza (série das Manchas Solares e série de Medidas do Brilho de uma Estrela) e quatro séries econômico-financeiras (Índice Dow Jones Industrial Average, Índice Nasdaq,´ Índice S&P500 e valores de Fechamento das Ações da Petrobras (PetrobrasON)). Os experimentos foram comparados com técnicas tradicionais de IA encontradas na literatura e com o Método TAEF |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-01-31 2014-06-12T15:54:09Z 2014-06-12T15:54:09Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
Salgado Gomes de Mattos Neto, Paulo; Crispim Vasconcelos, Germano. Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008. https://repositorio.ufpe.br/handle/123456789/2047 |
| identifier_str_mv |
Salgado Gomes de Mattos Neto, Paulo; Crispim Vasconcelos, Germano. Teoria da perturbação em sistemas híbridos inteligentes para a previsão de séries temporais. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008. |
| url |
https://repositorio.ufpe.br/handle/123456789/2047 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041921748664320 |