Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Matematica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/53481 |
Resumo: | In this work, we start studying some basic concepts of classical category theory, such as categories, functors, natural transformations, products and co-products, among other important concepts, understanding its definitions and their main properties. We proceed to the theory of monoidal categories, with the objective of understanding a generalization of the product in categories and of algebraic objects within such categories. We begin this part studying properties of the neutral, the commutativity of certain diagrams and the properties of functors that preserve the monoidal structure, with the aim of being able to prove MacLane’s coherence theorem, which gives us the commutativity of a large class of diagrams, and the strictification theorem, which gives us a monoidal category equivalent to the initial one that is algebraically simpler. We finish the study of these categories by looking at additional braiding structures, symmetry and internal algebraic structures (monoids, modules, bimodules and actions in monoidal categories). Finally, we extend the study of monoidal categories to the case of low-dimensional categories to prove a theorem recently proved by Shulman (which says that a certain bicategory associated with an isofibrant monoidal double category is also monoidal through a functorial association) and then we detail the applications of this result to some scenarios. |
| id |
UFPE_74ffa62459cc9ff9425c70a8904449ca |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/53481 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategoriesÁlgebraTeoria de categoriasIn this work, we start studying some basic concepts of classical category theory, such as categories, functors, natural transformations, products and co-products, among other important concepts, understanding its definitions and their main properties. We proceed to the theory of monoidal categories, with the objective of understanding a generalization of the product in categories and of algebraic objects within such categories. We begin this part studying properties of the neutral, the commutativity of certain diagrams and the properties of functors that preserve the monoidal structure, with the aim of being able to prove MacLane’s coherence theorem, which gives us the commutativity of a large class of diagrams, and the strictification theorem, which gives us a monoidal category equivalent to the initial one that is algebraically simpler. We finish the study of these categories by looking at additional braiding structures, symmetry and internal algebraic structures (monoids, modules, bimodules and actions in monoidal categories). Finally, we extend the study of monoidal categories to the case of low-dimensional categories to prove a theorem recently proved by Shulman (which says that a certain bicategory associated with an isofibrant monoidal double category is also monoidal through a functorial association) and then we detail the applications of this result to some scenarios.CAPESNeste trabalho começamos estudando alguns conceitos básicos da teoria de categorias clássica, como as categorias, funtores, transformações naturais, produtos e coprodutos, entre outros conceitos importantes, indo a fundo em suas definições e em suas propriedades gerais. Após este estudo nos é permitido estender o conhecimento para a teoria das categorias monoidais, com o objetivo de entender uma espécie de generalização do produto em categorias e de objetos algébricos dentro de tais categorias. Nesta parte, começamos estudando propriedades do neutro monoidal, a comutatividade de certos diagramas e propriedades de funtores que respeitam esta estrutura monoidal, com o objetivo de conseguirmos provar o teorema de coerência de MacLane, que nos provê a comutatividade de uma grande classe de diagramas, e o teorema de estritificação, que nos dá uma categoria monoidal equivalente à inicial que é mais algebricamente mais simples. Terminamos o estudo destas categorias vendo estruturas adicionais de trançamento, simetria e estruturas algébricas internas (monóides, módulos, bimódulos e ações em categorias monoidais). Por fim, estendemos o estudo de categorias monoidais para o caso de categorias de baixa dimensão para provar um teorema recentemente provado por Shulman (que diz que uma certa bicategoria associada à uma categoria dupla monoidal isofibrante é também monoidal através de uma associação funtorial) e detalhamos aplicações deste resultado em algumas situações.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em MatematicaLEANDRO, Eduardo Shirlippe Goeshttp://lattes.cnpq.br/9941863744577525http://lattes.cnpq.br/0559184209749319MACIEL, Pedro Linck2023-11-07T17:15:28Z2023-11-07T17:15:28Z2023-04-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMACIEL, Pedro Linck. Low dimensional monoidal category theory: a functorial method for constructing monoidal bicategories. 2023. Dissertação (Mestrado em Matemática) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/53481engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2023-11-08T05:21:29Zoai:repositorio.ufpe.br:123456789/53481Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-11-08T05:21:29Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories |
| title |
Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories |
| spellingShingle |
Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories MACIEL, Pedro Linck Álgebra Teoria de categorias |
| title_short |
Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories |
| title_full |
Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories |
| title_fullStr |
Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories |
| title_full_unstemmed |
Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories |
| title_sort |
Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories |
| author |
MACIEL, Pedro Linck |
| author_facet |
MACIEL, Pedro Linck |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
LEANDRO, Eduardo Shirlippe Goes http://lattes.cnpq.br/9941863744577525 http://lattes.cnpq.br/0559184209749319 |
| dc.contributor.author.fl_str_mv |
MACIEL, Pedro Linck |
| dc.subject.por.fl_str_mv |
Álgebra Teoria de categorias |
| topic |
Álgebra Teoria de categorias |
| description |
In this work, we start studying some basic concepts of classical category theory, such as categories, functors, natural transformations, products and co-products, among other important concepts, understanding its definitions and their main properties. We proceed to the theory of monoidal categories, with the objective of understanding a generalization of the product in categories and of algebraic objects within such categories. We begin this part studying properties of the neutral, the commutativity of certain diagrams and the properties of functors that preserve the monoidal structure, with the aim of being able to prove MacLane’s coherence theorem, which gives us the commutativity of a large class of diagrams, and the strictification theorem, which gives us a monoidal category equivalent to the initial one that is algebraically simpler. We finish the study of these categories by looking at additional braiding structures, symmetry and internal algebraic structures (monoids, modules, bimodules and actions in monoidal categories). Finally, we extend the study of monoidal categories to the case of low-dimensional categories to prove a theorem recently proved by Shulman (which says that a certain bicategory associated with an isofibrant monoidal double category is also monoidal through a functorial association) and then we detail the applications of this result to some scenarios. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-11-07T17:15:28Z 2023-11-07T17:15:28Z 2023-04-27 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
MACIEL, Pedro Linck. Low dimensional monoidal category theory: a functorial method for constructing monoidal bicategories. 2023. Dissertação (Mestrado em Matemática) – Universidade Federal de Pernambuco, Recife, 2023. https://repositorio.ufpe.br/handle/123456789/53481 |
| identifier_str_mv |
MACIEL, Pedro Linck. Low dimensional monoidal category theory: a functorial method for constructing monoidal bicategories. 2023. Dissertação (Mestrado em Matemática) – Universidade Federal de Pernambuco, Recife, 2023. |
| url |
https://repositorio.ufpe.br/handle/123456789/53481 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Matematica |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Matematica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042081642872832 |