Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: MACIEL, Pedro Linck
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Matematica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/53481
Resumo: In this work, we start studying some basic concepts of classical category theory, such as categories, functors, natural transformations, products and co-products, among other important concepts, understanding its definitions and their main properties. We proceed to the theory of monoidal categories, with the objective of understanding a generalization of the product in categories and of algebraic objects within such categories. We begin this part studying properties of the neutral, the commutativity of certain diagrams and the properties of functors that preserve the monoidal structure, with the aim of being able to prove MacLane’s coherence theorem, which gives us the commutativity of a large class of diagrams, and the strictification theorem, which gives us a monoidal category equivalent to the initial one that is algebraically simpler. We finish the study of these categories by looking at additional braiding structures, symmetry and internal algebraic structures (monoids, modules, bimodules and actions in monoidal categories). Finally, we extend the study of monoidal categories to the case of low-dimensional categories to prove a theorem recently proved by Shulman (which says that a certain bicategory associated with an isofibrant monoidal double category is also monoidal through a functorial association) and then we detail the applications of this result to some scenarios.
id UFPE_74ffa62459cc9ff9425c70a8904449ca
oai_identifier_str oai:repositorio.ufpe.br:123456789/53481
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategoriesÁlgebraTeoria de categoriasIn this work, we start studying some basic concepts of classical category theory, such as categories, functors, natural transformations, products and co-products, among other important concepts, understanding its definitions and their main properties. We proceed to the theory of monoidal categories, with the objective of understanding a generalization of the product in categories and of algebraic objects within such categories. We begin this part studying properties of the neutral, the commutativity of certain diagrams and the properties of functors that preserve the monoidal structure, with the aim of being able to prove MacLane’s coherence theorem, which gives us the commutativity of a large class of diagrams, and the strictification theorem, which gives us a monoidal category equivalent to the initial one that is algebraically simpler. We finish the study of these categories by looking at additional braiding structures, symmetry and internal algebraic structures (monoids, modules, bimodules and actions in monoidal categories). Finally, we extend the study of monoidal categories to the case of low-dimensional categories to prove a theorem recently proved by Shulman (which says that a certain bicategory associated with an isofibrant monoidal double category is also monoidal through a functorial association) and then we detail the applications of this result to some scenarios.CAPESNeste trabalho começamos estudando alguns conceitos básicos da teoria de categorias clássica, como as categorias, funtores, transformações naturais, produtos e coprodutos, entre outros conceitos importantes, indo a fundo em suas definições e em suas propriedades gerais. Após este estudo nos é permitido estender o conhecimento para a teoria das categorias monoidais, com o objetivo de entender uma espécie de generalização do produto em categorias e de objetos algébricos dentro de tais categorias. Nesta parte, começamos estudando propriedades do neutro monoidal, a comutatividade de certos diagramas e propriedades de funtores que respeitam esta estrutura monoidal, com o objetivo de conseguirmos provar o teorema de coerência de MacLane, que nos provê a comutatividade de uma grande classe de diagramas, e o teorema de estritificação, que nos dá uma categoria monoidal equivalente à inicial que é mais algebricamente mais simples. Terminamos o estudo destas categorias vendo estruturas adicionais de trançamento, simetria e estruturas algébricas internas (monóides, módulos, bimódulos e ações em categorias monoidais). Por fim, estendemos o estudo de categorias monoidais para o caso de categorias de baixa dimensão para provar um teorema recentemente provado por Shulman (que diz que uma certa bicategoria associada à uma categoria dupla monoidal isofibrante é também monoidal através de uma associação funtorial) e detalhamos aplicações deste resultado em algumas situações.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em MatematicaLEANDRO, Eduardo Shirlippe Goeshttp://lattes.cnpq.br/9941863744577525http://lattes.cnpq.br/0559184209749319MACIEL, Pedro Linck2023-11-07T17:15:28Z2023-11-07T17:15:28Z2023-04-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMACIEL, Pedro Linck. Low dimensional monoidal category theory: a functorial method for constructing monoidal bicategories. 2023. Dissertação (Mestrado em Matemática) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/53481engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2023-11-08T05:21:29Zoai:repositorio.ufpe.br:123456789/53481Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-11-08T05:21:29Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories
title Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories
spellingShingle Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories
MACIEL, Pedro Linck
Álgebra
Teoria de categorias
title_short Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories
title_full Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories
title_fullStr Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories
title_full_unstemmed Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories
title_sort Low dimensional monoidal category theory : a functorial method for constructing monoidal bicategories
author MACIEL, Pedro Linck
author_facet MACIEL, Pedro Linck
author_role author
dc.contributor.none.fl_str_mv LEANDRO, Eduardo Shirlippe Goes
http://lattes.cnpq.br/9941863744577525
http://lattes.cnpq.br/0559184209749319
dc.contributor.author.fl_str_mv MACIEL, Pedro Linck
dc.subject.por.fl_str_mv Álgebra
Teoria de categorias
topic Álgebra
Teoria de categorias
description In this work, we start studying some basic concepts of classical category theory, such as categories, functors, natural transformations, products and co-products, among other important concepts, understanding its definitions and their main properties. We proceed to the theory of monoidal categories, with the objective of understanding a generalization of the product in categories and of algebraic objects within such categories. We begin this part studying properties of the neutral, the commutativity of certain diagrams and the properties of functors that preserve the monoidal structure, with the aim of being able to prove MacLane’s coherence theorem, which gives us the commutativity of a large class of diagrams, and the strictification theorem, which gives us a monoidal category equivalent to the initial one that is algebraically simpler. We finish the study of these categories by looking at additional braiding structures, symmetry and internal algebraic structures (monoids, modules, bimodules and actions in monoidal categories). Finally, we extend the study of monoidal categories to the case of low-dimensional categories to prove a theorem recently proved by Shulman (which says that a certain bicategory associated with an isofibrant monoidal double category is also monoidal through a functorial association) and then we detail the applications of this result to some scenarios.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-07T17:15:28Z
2023-11-07T17:15:28Z
2023-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MACIEL, Pedro Linck. Low dimensional monoidal category theory: a functorial method for constructing monoidal bicategories. 2023. Dissertação (Mestrado em Matemática) – Universidade Federal de Pernambuco, Recife, 2023.
https://repositorio.ufpe.br/handle/123456789/53481
identifier_str_mv MACIEL, Pedro Linck. Low dimensional monoidal category theory: a functorial method for constructing monoidal bicategories. 2023. Dissertação (Mestrado em Matemática) – Universidade Federal de Pernambuco, Recife, 2023.
url https://repositorio.ufpe.br/handle/123456789/53481
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Matematica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Matematica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042081642872832