Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: SILVA, Douglas Tavares Ribeiro Paulino
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso embargado
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/54193
Resumo: Os serviços baseados em localização têm se tornado essenciais no cotidiano das pessoas em diversas aplicações, especialmente em ambientes indoor, como, por exemplo, shoppings, ae- roportos e hospitais. Uma das técnicas tradicionalmente utilizadas em localização indoor é a radiolocalização baseada em fingerprinting, que utiliza a similaridade entre os níveis de sinal de RF para estimar a localização do usuário. Contudo, essa técnica enfrenta desafios devido à heterogeneidade de dispositivos, mesmo quando estes são posicionados no mesmo local físico, resultando em variações nos níveis de sinal coletados, ocasionando o aumento do erro de pre- dição na localização. Tais variações são causadas, em grande parte, pela falta de padronização de hardware entre os fabricantes, resultando em diferentes chipsets de RF. Para lidar com esse problema, métodos de calibração são empregados para normalizar as variações dos níveis de sinal, indiretamente contribuindo para a redução do erro de predição de distância. No entanto, alguns desses métodos, como o HLF, o RSC e o DIFF, podem prejudicar o desempenho da localização em cenários homogêneos, uma vez que constroem um novo fingerprint em vez de utilizar os valores brutos dos níveis de sinal coletados. Para abordar as limitações de cada método, foi proposto um novo método de calibração, resultante da combinação dos métodos previamente analisados. Este método se mostrou adaptável tanto em cenários heterogêneos quanto homogêneos, melhorando assim o desempenho global do sistema de localização. Por exemplo, o método RSC/W-RSS conseguiu reduzir o erro médio de predição de 7 a 22% em relação ao método RSC. Em relação ao custo computacional, o método RSC/W-RSS se des- tacou por sua eficiência entre os métodos combinados. Esse resultado era esperado, pois esse método se baseia no método RSC, que por sua vez teve o menor tempo de processamento entre os métodos isolados. A depender do algoritmo de AM utilizado no processo, a combina- ção dos métodos de calibração na técnica FP tem o potencial de aprimorar o desempenho da localização, desde que seja mantido um custo computacional viável. O principal destaque foi o algoritmo FA juntamente com o método RSC/W-RSS, que superou os algoritmos k-NN e SVR devido à sua eficiência em termos de custo computacional e menor erro de predição de distância em boa parte dos casos avaliados.
id UFPE_75bb6b504ce37f75fc9af6d0f08f5fc2
oai_identifier_str oai:repositorio.ufpe.br:123456789/54193
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquinaRedes de computadoresFingerprintingAprendizagem de máquinaOs serviços baseados em localização têm se tornado essenciais no cotidiano das pessoas em diversas aplicações, especialmente em ambientes indoor, como, por exemplo, shoppings, ae- roportos e hospitais. Uma das técnicas tradicionalmente utilizadas em localização indoor é a radiolocalização baseada em fingerprinting, que utiliza a similaridade entre os níveis de sinal de RF para estimar a localização do usuário. Contudo, essa técnica enfrenta desafios devido à heterogeneidade de dispositivos, mesmo quando estes são posicionados no mesmo local físico, resultando em variações nos níveis de sinal coletados, ocasionando o aumento do erro de pre- dição na localização. Tais variações são causadas, em grande parte, pela falta de padronização de hardware entre os fabricantes, resultando em diferentes chipsets de RF. Para lidar com esse problema, métodos de calibração são empregados para normalizar as variações dos níveis de sinal, indiretamente contribuindo para a redução do erro de predição de distância. No entanto, alguns desses métodos, como o HLF, o RSC e o DIFF, podem prejudicar o desempenho da localização em cenários homogêneos, uma vez que constroem um novo fingerprint em vez de utilizar os valores brutos dos níveis de sinal coletados. Para abordar as limitações de cada método, foi proposto um novo método de calibração, resultante da combinação dos métodos previamente analisados. Este método se mostrou adaptável tanto em cenários heterogêneos quanto homogêneos, melhorando assim o desempenho global do sistema de localização. Por exemplo, o método RSC/W-RSS conseguiu reduzir o erro médio de predição de 7 a 22% em relação ao método RSC. Em relação ao custo computacional, o método RSC/W-RSS se des- tacou por sua eficiência entre os métodos combinados. Esse resultado era esperado, pois esse método se baseia no método RSC, que por sua vez teve o menor tempo de processamento entre os métodos isolados. A depender do algoritmo de AM utilizado no processo, a combina- ção dos métodos de calibração na técnica FP tem o potencial de aprimorar o desempenho da localização, desde que seja mantido um custo computacional viável. O principal destaque foi o algoritmo FA juntamente com o método RSC/W-RSS, que superou os algoritmos k-NN e SVR devido à sua eficiência em termos de custo computacional e menor erro de predição de distância em boa parte dos casos avaliados.CNPqLocation-based services have become essential in people’s daily lives in various applications, particularly in indoor environments such as shopping malls, airports, and hospitals. One of the traditionally employed techniques for indoor localization is fingerprinting-based radiolocation, which estimates user location based on the similarity between RF signal levels. However, this technique faces challenges due to device heterogeneity, even when they are positioned in the same physical location, resulting in signal level variations and increased location prediction errors. These variations are primarily caused by the lack of hardware standardization among manufacturers, leading to different RF chipsets. Calibration methods are employed to address this problem, aiming to normalize signal level variations and indirectly reduce distance pre- diction errors. However, some of these methods, such as HLF, RSC, and DIFF, can hinder localization performance in homogeneous scenarios, as they construct a new fingerprint instead of using raw signal level values. To address the limitations of each method, a new calibration method was proposed by combining previously analyzed methods. This method proved to be adaptable in both heterogeneous and homogeneous scenarios, thereby improving the overall localization system performance. For instance, the RSC/W-RSS method reduced the average prediction error by 7 to 22% compared to the RSC method. Concerning computational cost, the RSC/W-RSS method stood out for its efficiency among the combined methods. This result was expected, as this method is based on the RSC method, which, in turn, had the shortest processing time among the individual methods. Depending on the AM algorithm used in the process, the combination of calibration methods in the FP technique has the potential to enhance localization performance, provided a feasible computational cost is maintained. The primary highlight was the FA algorithm along with the RSC/W-RSS method, surpassing k-NN and SVR algorithms due to its computational efficiency and lower distance prediction error in most of the evaluated cases.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoCUNHA, Daniel Carvalho dahttp://lattes.cnpq.br/9593440102978964http://lattes.cnpq.br/8971986984647323SILVA, Douglas Tavares Ribeiro Paulino2023-12-19T18:33:00Z2023-12-19T18:33:00Z2023-09-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSILVA, Douglas Tavares Ribeiro Paulino. Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/54193porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2024-01-05T05:33:30Zoai:repositorio.ufpe.br:123456789/54193Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212024-01-05T05:33:30Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina
title Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina
spellingShingle Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina
SILVA, Douglas Tavares Ribeiro Paulino
Redes de computadores
Fingerprinting
Aprendizagem de máquina
title_short Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina
title_full Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina
title_fullStr Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina
title_full_unstemmed Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina
title_sort Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina
author SILVA, Douglas Tavares Ribeiro Paulino
author_facet SILVA, Douglas Tavares Ribeiro Paulino
author_role author
dc.contributor.none.fl_str_mv CUNHA, Daniel Carvalho da
http://lattes.cnpq.br/9593440102978964
http://lattes.cnpq.br/8971986984647323
dc.contributor.author.fl_str_mv SILVA, Douglas Tavares Ribeiro Paulino
dc.subject.por.fl_str_mv Redes de computadores
Fingerprinting
Aprendizagem de máquina
topic Redes de computadores
Fingerprinting
Aprendizagem de máquina
description Os serviços baseados em localização têm se tornado essenciais no cotidiano das pessoas em diversas aplicações, especialmente em ambientes indoor, como, por exemplo, shoppings, ae- roportos e hospitais. Uma das técnicas tradicionalmente utilizadas em localização indoor é a radiolocalização baseada em fingerprinting, que utiliza a similaridade entre os níveis de sinal de RF para estimar a localização do usuário. Contudo, essa técnica enfrenta desafios devido à heterogeneidade de dispositivos, mesmo quando estes são posicionados no mesmo local físico, resultando em variações nos níveis de sinal coletados, ocasionando o aumento do erro de pre- dição na localização. Tais variações são causadas, em grande parte, pela falta de padronização de hardware entre os fabricantes, resultando em diferentes chipsets de RF. Para lidar com esse problema, métodos de calibração são empregados para normalizar as variações dos níveis de sinal, indiretamente contribuindo para a redução do erro de predição de distância. No entanto, alguns desses métodos, como o HLF, o RSC e o DIFF, podem prejudicar o desempenho da localização em cenários homogêneos, uma vez que constroem um novo fingerprint em vez de utilizar os valores brutos dos níveis de sinal coletados. Para abordar as limitações de cada método, foi proposto um novo método de calibração, resultante da combinação dos métodos previamente analisados. Este método se mostrou adaptável tanto em cenários heterogêneos quanto homogêneos, melhorando assim o desempenho global do sistema de localização. Por exemplo, o método RSC/W-RSS conseguiu reduzir o erro médio de predição de 7 a 22% em relação ao método RSC. Em relação ao custo computacional, o método RSC/W-RSS se des- tacou por sua eficiência entre os métodos combinados. Esse resultado era esperado, pois esse método se baseia no método RSC, que por sua vez teve o menor tempo de processamento entre os métodos isolados. A depender do algoritmo de AM utilizado no processo, a combina- ção dos métodos de calibração na técnica FP tem o potencial de aprimorar o desempenho da localização, desde que seja mantido um custo computacional viável. O principal destaque foi o algoritmo FA juntamente com o método RSC/W-RSS, que superou os algoritmos k-NN e SVR devido à sua eficiência em termos de custo computacional e menor erro de predição de distância em boa parte dos casos avaliados.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-19T18:33:00Z
2023-12-19T18:33:00Z
2023-09-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, Douglas Tavares Ribeiro Paulino. Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.
https://repositorio.ufpe.br/handle/123456789/54193
identifier_str_mv SILVA, Douglas Tavares Ribeiro Paulino. Avaliação de métodos de calibração livre aplicados à radiolocalização fingerprinting baseada em aprendizado de máquina. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.
url https://repositorio.ufpe.br/handle/123456789/54193
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041986787639296