Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: MORAIS, Lucas Rabelo de Araujo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/64973
Resumo: The “Global Race For AI” has driven the pursuit of a strategy known as “AI for society”. One of the key outcomes of this strategy was the General Data Protection Regulation (GDPR), an European regulation enforced on May 28, 2018, which established the “right to explana- tion”. This regulation significantly contributed to the rise of Explainable AI (XAI). Amidst this wave of technological innovation, the market around digital assets, commonly known as the cryptocurrency market has benefited from research into Artificial Intelligence (AI) and Machine Learning (ML) based trading systems. However, these systems often rely on black-box mod- els, making explainability crucial. In this context, this work applies Machine Learning models specifically designed for Time-Series Classification (TSC) and proposes a novel hybrid method that provides time-series-based explanations. After collecting Bitcoin and cryptocurrency data from a crypto exchange, the data is processed and trained using ML tabular models, ML TSC models, and Deep Learning (DL) models. The study evaluates uncertainty, performance, and explainability through a hybrid explainability model, which merges COMTE (a counterfactual TSC explanation method) and LEFTIST (a time-point-based method that provides feature importance for each timestep). The results show that the Multiple Representations Sequence Miner (MRSQM) TSC model achieved a strong performance, while ML tabular models did not differ significantly from TSC models. DL models, however, performed poorly, particularly in the second experiment. Uncertainty analysis revealed notable differences in uncertainty estimation, and the COMTE-LEFTIST hybrid explainability model successfully provided hybrid explana- tions. The hybrid model performed particularly well in the first experiment, which focused on univariate time-series data, while the second experiment, involving multiple time-series in a tabular format, presented additional challenges. In conclusion, this is among the first works to apply TSC methods to Bitcoin and other cryptocurrencies, while also proposing a novel hybrid explainability approach for TSC, encouraging further research and development in the field.
id UFPE_7be9e9081ec0c0dee8e8c7d3498b66ff
oai_identifier_str oai:repositorio.ufpe.br:123456789/64973
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classificationExplainable AITime-Series ClassificationHybrid Explanations.The “Global Race For AI” has driven the pursuit of a strategy known as “AI for society”. One of the key outcomes of this strategy was the General Data Protection Regulation (GDPR), an European regulation enforced on May 28, 2018, which established the “right to explana- tion”. This regulation significantly contributed to the rise of Explainable AI (XAI). Amidst this wave of technological innovation, the market around digital assets, commonly known as the cryptocurrency market has benefited from research into Artificial Intelligence (AI) and Machine Learning (ML) based trading systems. However, these systems often rely on black-box mod- els, making explainability crucial. In this context, this work applies Machine Learning models specifically designed for Time-Series Classification (TSC) and proposes a novel hybrid method that provides time-series-based explanations. After collecting Bitcoin and cryptocurrency data from a crypto exchange, the data is processed and trained using ML tabular models, ML TSC models, and Deep Learning (DL) models. The study evaluates uncertainty, performance, and explainability through a hybrid explainability model, which merges COMTE (a counterfactual TSC explanation method) and LEFTIST (a time-point-based method that provides feature importance for each timestep). The results show that the Multiple Representations Sequence Miner (MRSQM) TSC model achieved a strong performance, while ML tabular models did not differ significantly from TSC models. DL models, however, performed poorly, particularly in the second experiment. Uncertainty analysis revealed notable differences in uncertainty estimation, and the COMTE-LEFTIST hybrid explainability model successfully provided hybrid explana- tions. The hybrid model performed particularly well in the first experiment, which focused on univariate time-series data, while the second experiment, involving multiple time-series in a tabular format, presented additional challenges. In conclusion, this is among the first works to apply TSC methods to Bitcoin and other cryptocurrencies, while also proposing a novel hybrid explainability approach for TSC, encouraging further research and development in the field.A “Corrida Global pela IA” incentivou uma estratégia conhecida como “IA para a soci- edade”. Um dos principais resultados dessa estratégia foi o Regulamento Geral de Proteção de Dados (GDPR), uma regulamentação europeia aplicada em 28 de maio de 2018, que es- tabeleceu o “direito à explicação”. Essa regulamentação contribuiu significativamente para o avanço da Inteligência Artificial Explicável (XAI). Em meio a essas inovações tecnológicas, o mercado de ativos digitais, conhecidos como criptomoedas, se beneficiaram de pesquisas sobre sistemas de trade com Inteligência Artificial (IA) e Aprendizado de Máquina (AM). No entanto, esses sistemas frequentemente dependem de modelos caixa-preta, tornando a expli- cabilidade um aspecto crucial. Nesse contexto, este trabalho aplica modelos de Aprendizado de Máquina especificamente desenhados para Classificação de Séries Temporais (CST) e pro- põe um novo método híbrido que fornece explicações baseadas em séries temporais. Após a coleta de dados de Bitcoin e outras criptomoedas de uma exchange, os dados são processa- dos e treinados utilizando modelos de AM tabular, modelos de AM para séries temporais e modelos de Aprendizado Profundo (AP). O estudo avalia incerteza, performance dos modelos e a explicabilidade por meio de um modelo híbrido de explicabilidade, que combina COMTE (método contrafactual de explicação para CST) e LEFTIST (método baseado em ondaletas que fornece a importância de cada janela de tempo). Os resultados mostram que o modelo de CST MRSQM (Multiple Representations Sequence Miner) obteve um desempenho robusto, enquanto os modelos AM tabular não apresentaram diferenças significativas em relação aos modelos de CST. No entanto, os modelos de AP tiveram um desempenho fraco, especialmente no segundo experimento. A análise de incerteza revelou diferenças notáveis na estimativa de in- certeza dentre os modelos, e o modelo híbrido de explicabilidade COMTE-LEFTIST conseguiu fornecer explicações híbridas com sucesso. O modelo híbrido teve um desempenho particular- mente bom no primeiro experimento, que focou em séries temporais univariadas, já no segundo experimento, envolvendo múltiplas séries temporais em formato tabular, apresentou desafios adicionais. Em conclusão, este trabalho está entre os primeiros a aplicar métodos de CST ao Bitcoin e a diferentes criptomoedas, além de propor um método híbrido de explicação para CST, incentivando pesquisas e desenvolvimentos adicionais na área.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoLUDERMIR, Teresa Bernardahttp://lattes.cnpq.br/7763647106522329http://lattes.cnpq.br/6321179168854922MORAIS, Lucas Rabelo de Araujo2025-08-11T12:19:52Z2025-08-11T12:19:52Z2025-07-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMORAIS, Lucas Rabelo de Araujo. Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2025https://repositorio.ufpe.br/handle/123456789/64973enghttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2025-08-17T17:50:13Zoai:repositorio.ufpe.br:123456789/64973Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212025-08-17T17:50:13Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification
title Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification
spellingShingle Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification
MORAIS, Lucas Rabelo de Araujo
Explainable AI
Time-Series Classification
Hybrid Explanations.
title_short Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification
title_full Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification
title_fullStr Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification
title_full_unstemmed Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification
title_sort Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification
author MORAIS, Lucas Rabelo de Araujo
author_facet MORAIS, Lucas Rabelo de Araujo
author_role author
dc.contributor.none.fl_str_mv LUDERMIR, Teresa Bernarda
http://lattes.cnpq.br/7763647106522329
http://lattes.cnpq.br/6321179168854922
dc.contributor.author.fl_str_mv MORAIS, Lucas Rabelo de Araujo
dc.subject.por.fl_str_mv Explainable AI
Time-Series Classification
Hybrid Explanations.
topic Explainable AI
Time-Series Classification
Hybrid Explanations.
description The “Global Race For AI” has driven the pursuit of a strategy known as “AI for society”. One of the key outcomes of this strategy was the General Data Protection Regulation (GDPR), an European regulation enforced on May 28, 2018, which established the “right to explana- tion”. This regulation significantly contributed to the rise of Explainable AI (XAI). Amidst this wave of technological innovation, the market around digital assets, commonly known as the cryptocurrency market has benefited from research into Artificial Intelligence (AI) and Machine Learning (ML) based trading systems. However, these systems often rely on black-box mod- els, making explainability crucial. In this context, this work applies Machine Learning models specifically designed for Time-Series Classification (TSC) and proposes a novel hybrid method that provides time-series-based explanations. After collecting Bitcoin and cryptocurrency data from a crypto exchange, the data is processed and trained using ML tabular models, ML TSC models, and Deep Learning (DL) models. The study evaluates uncertainty, performance, and explainability through a hybrid explainability model, which merges COMTE (a counterfactual TSC explanation method) and LEFTIST (a time-point-based method that provides feature importance for each timestep). The results show that the Multiple Representations Sequence Miner (MRSQM) TSC model achieved a strong performance, while ML tabular models did not differ significantly from TSC models. DL models, however, performed poorly, particularly in the second experiment. Uncertainty analysis revealed notable differences in uncertainty estimation, and the COMTE-LEFTIST hybrid explainability model successfully provided hybrid explana- tions. The hybrid model performed particularly well in the first experiment, which focused on univariate time-series data, while the second experiment, involving multiple time-series in a tabular format, presented additional challenges. In conclusion, this is among the first works to apply TSC methods to Bitcoin and other cryptocurrencies, while also proposing a novel hybrid explainability approach for TSC, encouraging further research and development in the field.
publishDate 2025
dc.date.none.fl_str_mv 2025-08-11T12:19:52Z
2025-08-11T12:19:52Z
2025-07-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MORAIS, Lucas Rabelo de Araujo. Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2025
https://repositorio.ufpe.br/handle/123456789/64973
identifier_str_mv MORAIS, Lucas Rabelo de Araujo. Bitcoin and cryptocurrencies : comte-leftist hybrid explanations and time-series classification. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2025
url https://repositorio.ufpe.br/handle/123456789/64973
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041965841285120