Rabbit: A novel approach to find data-races during state-space exploration

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Oliveira, João Paulo dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/10891
Resumo: Data-races are an important kind of error in concurrent shared-memory programs. Software model checking is a popular approach to find them. This research proposes a novel approach to find races that complements model-checking by efficiently reporting precise warnings during state-space exploration (SSE): Rabbit. It uses information obtained across different paths explored during SSE to predict likely racy memory accesses. We evaluated Rabbit on 33 different scenarios of race, involving a total of 21 distinct application subjects of various sources and sizes. Results indicate that Rabbit reports race warnings very soon compared to the time the model checker detects the race (for 84.8% of the cases it reports a true warning of race in <5s) and that the warnings it reports include very few false alarms. We also observed that the model checker finds the actual race quickly when it uses a guided-search that builds on Rabbit’s output (for 74.2% of the cases it reports the race in <20s).
id UFPE_8e37d8f3c4af167f1babb0cd059a3105
oai_identifier_str oai:repositorio.ufpe.br:123456789/10891
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Rabbit: A novel approach to find data-races during state-space explorationRabbit: A novel approach to find data-races during state-space explorationConcorrencySoftware VerificationModel CheckingRace conditionsData-races are an important kind of error in concurrent shared-memory programs. Software model checking is a popular approach to find them. This research proposes a novel approach to find races that complements model-checking by efficiently reporting precise warnings during state-space exploration (SSE): Rabbit. It uses information obtained across different paths explored during SSE to predict likely racy memory accesses. We evaluated Rabbit on 33 different scenarios of race, involving a total of 21 distinct application subjects of various sources and sizes. Results indicate that Rabbit reports race warnings very soon compared to the time the model checker detects the race (for 84.8% of the cases it reports a true warning of race in <5s) and that the warnings it reports include very few false alarms. We also observed that the model checker finds the actual race quickly when it uses a guided-search that builds on Rabbit’s output (for 74.2% of the cases it reports the race in <20s).Universidade Federal de PernambucoLima Filho, Fernando José Castor de d’Amorim, Marcelo Bezerra Oliveira, João Paulo dos Santos2015-03-05T18:45:35Z2015-03-05T18:45:35Z2012-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfOLIVEIRA, João Paulo dos Santos. Rabbit: a novel approach to find data-races during state-space exploration. Recife, 2012. 48 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2012.https://repositorio.ufpe.br/handle/123456789/10891engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T07:31:23Zoai:repositorio.ufpe.br:123456789/10891Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:31:23Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Rabbit: A novel approach to find data-races during state-space exploration
Rabbit: A novel approach to find data-races during state-space exploration
title Rabbit: A novel approach to find data-races during state-space exploration
spellingShingle Rabbit: A novel approach to find data-races during state-space exploration
Oliveira, João Paulo dos Santos
Concorrency
Software Verification
Model Checking
Race conditions
title_short Rabbit: A novel approach to find data-races during state-space exploration
title_full Rabbit: A novel approach to find data-races during state-space exploration
title_fullStr Rabbit: A novel approach to find data-races during state-space exploration
title_full_unstemmed Rabbit: A novel approach to find data-races during state-space exploration
title_sort Rabbit: A novel approach to find data-races during state-space exploration
author Oliveira, João Paulo dos Santos
author_facet Oliveira, João Paulo dos Santos
author_role author
dc.contributor.none.fl_str_mv Lima Filho, Fernando José Castor de
d’Amorim, Marcelo Bezerra
dc.contributor.author.fl_str_mv Oliveira, João Paulo dos Santos
dc.subject.por.fl_str_mv Concorrency
Software Verification
Model Checking
Race conditions
topic Concorrency
Software Verification
Model Checking
Race conditions
description Data-races are an important kind of error in concurrent shared-memory programs. Software model checking is a popular approach to find them. This research proposes a novel approach to find races that complements model-checking by efficiently reporting precise warnings during state-space exploration (SSE): Rabbit. It uses information obtained across different paths explored during SSE to predict likely racy memory accesses. We evaluated Rabbit on 33 different scenarios of race, involving a total of 21 distinct application subjects of various sources and sizes. Results indicate that Rabbit reports race warnings very soon compared to the time the model checker detects the race (for 84.8% of the cases it reports a true warning of race in <5s) and that the warnings it reports include very few false alarms. We also observed that the model checker finds the actual race quickly when it uses a guided-search that builds on Rabbit’s output (for 74.2% of the cases it reports the race in <20s).
publishDate 2012
dc.date.none.fl_str_mv 2012-08-30
2015-03-05T18:45:35Z
2015-03-05T18:45:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv OLIVEIRA, João Paulo dos Santos. Rabbit: a novel approach to find data-races during state-space exploration. Recife, 2012. 48 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2012.
https://repositorio.ufpe.br/handle/123456789/10891
identifier_str_mv OLIVEIRA, João Paulo dos Santos. Rabbit: a novel approach to find data-races during state-space exploration. Recife, 2012. 48 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2012.
url https://repositorio.ufpe.br/handle/123456789/10891
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042026539155456