Uma nova abordagem do Real AdaBoost resistente a overfitting para classificação de dados binários

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: SILVA JÚNIOR, Valter Eduardo da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/22431
Resumo: O estudo da Inteligência Artificial (IA) e de suas técnicas tem trazido grandes resultados para a evolução da tecnologia em diversas áreas. Técnicas já conhecidas como as Redes Neurais (RN) e Árvores de Decisão (AD) vêm sendo aprimoradas por técnicas de Boosting como o Adaptive Boosting (AdaBoost). Esta técnica é uma das que apresenta maior perspectiva de crescimento devido a seu potencial, flexibilidade e simplicidade para ser implementada em diferentes cenários, como por exemplo, no tratamento para reconhecimento de padrões. Desde o seu surgimento surgiram várias variantes do AdaBoost, as mais conhecidas são o Real AdaBoost (RAb) e Gentle AdaBoost (GAb), no intuito de obter um melhor desempenho. Um problema peculiar do Real AdaBoost é relacionado a base de dados com ruído. Vários artigos sugerem que o Real AdaBoost é sensível a um nível alto de ruído. A partir desse problema será proposto uma nova variante do Real AdaBoost com o objetivo de reduzir esta sensibilidade ao ruído visto ao aparecimento de overfitting nas bases de testes dos problemas com ruído. A nova variante do Real Adaboost será chamada de Noise Real AdaBoost (NRAb), onde será aplicada em base de dados simuladas e reais e será utilizado Real AdaBoost e Gentle AdaBoost para comparar o desempenho em relação a nova variante proposta nesta dissertação.
id UFPE_90f371fd03bdaabeaf7edaee35eeb1d5
oai_identifier_str oai:repositorio.ufpe.br:123456789/22431
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Uma nova abordagem do Real AdaBoost resistente a overfitting para classificação de dados bináriosInteligência artificialAlgorítimos computacionaisClassificaçãoO estudo da Inteligência Artificial (IA) e de suas técnicas tem trazido grandes resultados para a evolução da tecnologia em diversas áreas. Técnicas já conhecidas como as Redes Neurais (RN) e Árvores de Decisão (AD) vêm sendo aprimoradas por técnicas de Boosting como o Adaptive Boosting (AdaBoost). Esta técnica é uma das que apresenta maior perspectiva de crescimento devido a seu potencial, flexibilidade e simplicidade para ser implementada em diferentes cenários, como por exemplo, no tratamento para reconhecimento de padrões. Desde o seu surgimento surgiram várias variantes do AdaBoost, as mais conhecidas são o Real AdaBoost (RAb) e Gentle AdaBoost (GAb), no intuito de obter um melhor desempenho. Um problema peculiar do Real AdaBoost é relacionado a base de dados com ruído. Vários artigos sugerem que o Real AdaBoost é sensível a um nível alto de ruído. A partir desse problema será proposto uma nova variante do Real AdaBoost com o objetivo de reduzir esta sensibilidade ao ruído visto ao aparecimento de overfitting nas bases de testes dos problemas com ruído. A nova variante do Real Adaboost será chamada de Noise Real AdaBoost (NRAb), onde será aplicada em base de dados simuladas e reais e será utilizado Real AdaBoost e Gentle AdaBoost para comparar o desempenho em relação a nova variante proposta nesta dissertação.The study of Artificial Intelligence (AI) and its techniques have brought great results for the evolution of technology in various fields. Known techniques such as Neural Networks (RN) and Decision Trees (AD) have been enhanced by Boosting techniques such as Adaptive Boosting (AdaBoost). This technique is one that has greater prospect of growth potential due to its flexibility and simplicity to be implemented in different scenarios, such as in treatment for pattern recognition. Since its inception AdaBoost were several variants, the best known are the Real AdaBoost (RAB) and Gentle AdaBoost (GAB) in order to get better performance. A peculiar problem of Real AdaBoost is related to noise with database. Several articles suggest that Real AdaBoost is sensitive to a high noise level. From this problem a new variant of Real AdaBoost in order to reduce this sensitivity to noise seen the emergence of overfitting in the problems with noise test bases will be proposed. The new variant of the Real AdaBoost will be called Noise Real AdaBoost (NRAb), which will be applied to simulated and real data base and will be used Real AdaBoost and Gentle AdaBoost to compare performance against the new variant proposed in this dissertation.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoSOUZA, Renata Maria Cardoso Rodrigues dehttp://lattes.cnpq.br/6404608969601111http://lattes.cnpq.br/9289080285504453SILVA JÚNIOR, Valter Eduardo da2017-11-29T18:16:12Z2017-11-29T18:16:12Z2016-08-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/22431porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-26T01:42:13Zoai:repositorio.ufpe.br:123456789/22431Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T01:42:13Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Uma nova abordagem do Real AdaBoost resistente a overfitting para classificação de dados binários
title Uma nova abordagem do Real AdaBoost resistente a overfitting para classificação de dados binários
spellingShingle Uma nova abordagem do Real AdaBoost resistente a overfitting para classificação de dados binários
SILVA JÚNIOR, Valter Eduardo da
Inteligência artificial
Algorítimos computacionais
Classificação
title_short Uma nova abordagem do Real AdaBoost resistente a overfitting para classificação de dados binários
title_full Uma nova abordagem do Real AdaBoost resistente a overfitting para classificação de dados binários
title_fullStr Uma nova abordagem do Real AdaBoost resistente a overfitting para classificação de dados binários
title_full_unstemmed Uma nova abordagem do Real AdaBoost resistente a overfitting para classificação de dados binários
title_sort Uma nova abordagem do Real AdaBoost resistente a overfitting para classificação de dados binários
author SILVA JÚNIOR, Valter Eduardo da
author_facet SILVA JÚNIOR, Valter Eduardo da
author_role author
dc.contributor.none.fl_str_mv SOUZA, Renata Maria Cardoso Rodrigues de
http://lattes.cnpq.br/6404608969601111
http://lattes.cnpq.br/9289080285504453
dc.contributor.author.fl_str_mv SILVA JÚNIOR, Valter Eduardo da
dc.subject.por.fl_str_mv Inteligência artificial
Algorítimos computacionais
Classificação
topic Inteligência artificial
Algorítimos computacionais
Classificação
description O estudo da Inteligência Artificial (IA) e de suas técnicas tem trazido grandes resultados para a evolução da tecnologia em diversas áreas. Técnicas já conhecidas como as Redes Neurais (RN) e Árvores de Decisão (AD) vêm sendo aprimoradas por técnicas de Boosting como o Adaptive Boosting (AdaBoost). Esta técnica é uma das que apresenta maior perspectiva de crescimento devido a seu potencial, flexibilidade e simplicidade para ser implementada em diferentes cenários, como por exemplo, no tratamento para reconhecimento de padrões. Desde o seu surgimento surgiram várias variantes do AdaBoost, as mais conhecidas são o Real AdaBoost (RAb) e Gentle AdaBoost (GAb), no intuito de obter um melhor desempenho. Um problema peculiar do Real AdaBoost é relacionado a base de dados com ruído. Vários artigos sugerem que o Real AdaBoost é sensível a um nível alto de ruído. A partir desse problema será proposto uma nova variante do Real AdaBoost com o objetivo de reduzir esta sensibilidade ao ruído visto ao aparecimento de overfitting nas bases de testes dos problemas com ruído. A nova variante do Real Adaboost será chamada de Noise Real AdaBoost (NRAb), onde será aplicada em base de dados simuladas e reais e será utilizado Real AdaBoost e Gentle AdaBoost para comparar o desempenho em relação a nova variante proposta nesta dissertação.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-26
2017-11-29T18:16:12Z
2017-11-29T18:16:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/22431
url https://repositorio.ufpe.br/handle/123456789/22431
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041998910226432