Mapas auto-organizáveis probabilísticos para categorização de lugares baseada em objetos

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: SILVA JÚNIOR, Marcondes Ricarte da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/21053
Resumo: Os robôs móveis estão cada vez mais inclusos na sociedade moderna podendo se locomover usando “coordenadas cartográficas”. No entanto, com o intuito de aperfeiçoar a interação homem-robô e a navegação das máquinas nos ambientes, os robôs podem dispor da habilidade de criar um Mapa Semântico realizando Categorização dos Lugares. Este é o nome da área de estudo que busca replicar a habilidade humana de aprender, identificar e inferir os rótulos conceituais dos lugares através de sensores, em geral, câmeras. Esta pesquisa busca realizar a Categorização de Lugares baseada em objetos existentes no ambiente. Os objetos são importantes descritores de informação para ambientes fechados. Desse modo as imagens podem ser representadas por um vetor de frequência de objetos contidos naquele lugar. No entanto, a quantidade de todos possíveis tipos de objetos existentes é alta e os lugares possuem poucos destes, fazendo com que a representação vetorial de um lugar através de objetos contidos nele seja esparsa. Os métodos propostos por este trabalho possuem duas etapas: Redutor de Dimensionalidade e Categorizador. A primeira se baseia em conceitos de Compressão de Sinais, de Aprendizagem Profunda e Mapas Auto-Organizáveis (SOMs), a fim de realizar o pré-processamento dos dados de frequência de objetos para a redução da dimensionalidade e minimização da esparsidade dos dados. Para segunda etapa foi proposto o uso de múltiplos Mapas Auto-Organizáveis Probabilísticos (PSOMs). Os experimentos foram realizados para os métodos propostos por esse trabalho e comparados com o Filtro Bayesiano, existente na literatura para solução desse problema. Os experimentos foram realizados com quatro diferentes bases de dados que variam em ordem crescente de quantidade de amostras e categorias. As taxas de acerto dos métodos propostos demonstraram ser superiores à literatura quando o número de categorias das bases de dados é alta. Os resultados para o Filtro Bayesiano degeneram para as bases com maiores quantidade de categorias, enquanto para os métodos propostos por essa pesquisa as taxas de acerto caem mais lentamente.
id UFPE_91c2654c25b7b6ffca982d38e27ad03f
oai_identifier_str oai:repositorio.ufpe.br:123456789/21053
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Mapas auto-organizáveis probabilísticos para categorização de lugares baseada em objetosCategorização de LugaresRedução de DimensionalidadeAprendizado ProfundoMapas Auto-Organizáveis ProbabilísticosDados EsparsosOs robôs móveis estão cada vez mais inclusos na sociedade moderna podendo se locomover usando “coordenadas cartográficas”. No entanto, com o intuito de aperfeiçoar a interação homem-robô e a navegação das máquinas nos ambientes, os robôs podem dispor da habilidade de criar um Mapa Semântico realizando Categorização dos Lugares. Este é o nome da área de estudo que busca replicar a habilidade humana de aprender, identificar e inferir os rótulos conceituais dos lugares através de sensores, em geral, câmeras. Esta pesquisa busca realizar a Categorização de Lugares baseada em objetos existentes no ambiente. Os objetos são importantes descritores de informação para ambientes fechados. Desse modo as imagens podem ser representadas por um vetor de frequência de objetos contidos naquele lugar. No entanto, a quantidade de todos possíveis tipos de objetos existentes é alta e os lugares possuem poucos destes, fazendo com que a representação vetorial de um lugar através de objetos contidos nele seja esparsa. Os métodos propostos por este trabalho possuem duas etapas: Redutor de Dimensionalidade e Categorizador. A primeira se baseia em conceitos de Compressão de Sinais, de Aprendizagem Profunda e Mapas Auto-Organizáveis (SOMs), a fim de realizar o pré-processamento dos dados de frequência de objetos para a redução da dimensionalidade e minimização da esparsidade dos dados. Para segunda etapa foi proposto o uso de múltiplos Mapas Auto-Organizáveis Probabilísticos (PSOMs). Os experimentos foram realizados para os métodos propostos por esse trabalho e comparados com o Filtro Bayesiano, existente na literatura para solução desse problema. Os experimentos foram realizados com quatro diferentes bases de dados que variam em ordem crescente de quantidade de amostras e categorias. As taxas de acerto dos métodos propostos demonstraram ser superiores à literatura quando o número de categorias das bases de dados é alta. Os resultados para o Filtro Bayesiano degeneram para as bases com maiores quantidade de categorias, enquanto para os métodos propostos por essa pesquisa as taxas de acerto caem mais lentamente.CAPESMobile Robots are currently included in modern society routine in which they may move around often using "cartographic coordinates". However, in order to improve human-robot interaction and navigation of the robots in the environment, they can have the ability to create a Semantic Map by Categorization of Places. The computing area of study that searches to replicate the human ability to learn, identify and infer conceptual labels for places through sensor data, in general, cameras is the Place Categorization. These methods aim to categorize places based on existing objects in the environment which constitute important information descriptors for indoors. Thus, each image can be represented by the frequency of the objects present in a particular place. However, the number of all possible types of objects is high and the places do have few of them, hence, the vector representation of the objects in a place is usually sparse. The methods proposed by this dissertation have two stages: Dimensionality reduction and categorization. The first stage relies on Signal Compression concepts, Deep Learning and Self-Organizing Maps (SOMs), aiming at preprocessing the data on object frequencies for dimensionality reduction and minimization of data sparsity. The second stage employs Probabilistic Self-Organizing Maps (PSOMs). The experiments were performed for the two proposed methods and compared with the Bayesian filter previously proposed in the literature. The experiments were performed with four different databases ranging considering different number of samples and categories. The accuracy of the proposed methods was higher than the previous models when the number of categories of the database is high. The results for the Bayesian filter tends to degrade with higher number of categories, so do the proposed methods, however, in a slower rate.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoARAÚJO, Aluizio Fausto Ribeirohttp://lattes.cnpq.br/7666245847142592http://lattes.cnpq.br/8715023255304328SILVA JÚNIOR, Marcondes Ricarte da2017-08-31T12:45:41Z2017-08-31T12:45:41Z2016-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/21053porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T10:10:16Zoai:repositorio.ufpe.br:123456789/21053Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T10:10:16Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Mapas auto-organizáveis probabilísticos para categorização de lugares baseada em objetos
title Mapas auto-organizáveis probabilísticos para categorização de lugares baseada em objetos
spellingShingle Mapas auto-organizáveis probabilísticos para categorização de lugares baseada em objetos
SILVA JÚNIOR, Marcondes Ricarte da
Categorização de Lugares
Redução de Dimensionalidade
Aprendizado Profundo
Mapas Auto-Organizáveis Probabilísticos
Dados Esparsos
title_short Mapas auto-organizáveis probabilísticos para categorização de lugares baseada em objetos
title_full Mapas auto-organizáveis probabilísticos para categorização de lugares baseada em objetos
title_fullStr Mapas auto-organizáveis probabilísticos para categorização de lugares baseada em objetos
title_full_unstemmed Mapas auto-organizáveis probabilísticos para categorização de lugares baseada em objetos
title_sort Mapas auto-organizáveis probabilísticos para categorização de lugares baseada em objetos
author SILVA JÚNIOR, Marcondes Ricarte da
author_facet SILVA JÚNIOR, Marcondes Ricarte da
author_role author
dc.contributor.none.fl_str_mv ARAÚJO, Aluizio Fausto Ribeiro
http://lattes.cnpq.br/7666245847142592
http://lattes.cnpq.br/8715023255304328
dc.contributor.author.fl_str_mv SILVA JÚNIOR, Marcondes Ricarte da
dc.subject.por.fl_str_mv Categorização de Lugares
Redução de Dimensionalidade
Aprendizado Profundo
Mapas Auto-Organizáveis Probabilísticos
Dados Esparsos
topic Categorização de Lugares
Redução de Dimensionalidade
Aprendizado Profundo
Mapas Auto-Organizáveis Probabilísticos
Dados Esparsos
description Os robôs móveis estão cada vez mais inclusos na sociedade moderna podendo se locomover usando “coordenadas cartográficas”. No entanto, com o intuito de aperfeiçoar a interação homem-robô e a navegação das máquinas nos ambientes, os robôs podem dispor da habilidade de criar um Mapa Semântico realizando Categorização dos Lugares. Este é o nome da área de estudo que busca replicar a habilidade humana de aprender, identificar e inferir os rótulos conceituais dos lugares através de sensores, em geral, câmeras. Esta pesquisa busca realizar a Categorização de Lugares baseada em objetos existentes no ambiente. Os objetos são importantes descritores de informação para ambientes fechados. Desse modo as imagens podem ser representadas por um vetor de frequência de objetos contidos naquele lugar. No entanto, a quantidade de todos possíveis tipos de objetos existentes é alta e os lugares possuem poucos destes, fazendo com que a representação vetorial de um lugar através de objetos contidos nele seja esparsa. Os métodos propostos por este trabalho possuem duas etapas: Redutor de Dimensionalidade e Categorizador. A primeira se baseia em conceitos de Compressão de Sinais, de Aprendizagem Profunda e Mapas Auto-Organizáveis (SOMs), a fim de realizar o pré-processamento dos dados de frequência de objetos para a redução da dimensionalidade e minimização da esparsidade dos dados. Para segunda etapa foi proposto o uso de múltiplos Mapas Auto-Organizáveis Probabilísticos (PSOMs). Os experimentos foram realizados para os métodos propostos por esse trabalho e comparados com o Filtro Bayesiano, existente na literatura para solução desse problema. Os experimentos foram realizados com quatro diferentes bases de dados que variam em ordem crescente de quantidade de amostras e categorias. As taxas de acerto dos métodos propostos demonstraram ser superiores à literatura quando o número de categorias das bases de dados é alta. Os resultados para o Filtro Bayesiano degeneram para as bases com maiores quantidade de categorias, enquanto para os métodos propostos por essa pesquisa as taxas de acerto caem mais lentamente.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-30
2017-08-31T12:45:41Z
2017-08-31T12:45:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/21053
url https://repositorio.ufpe.br/handle/123456789/21053
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042011160739840