A contribution to machine learning applications in logistics and maintenance problems
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso embargado |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Engenharia de Producao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/43731 |
Resumo: | As the time goes by, organizations acknowledge more and more the role of business support functions for the achievement of competitiveness and a sustainable performance. Considering that, it is important to propose novel mathematical models that enable the improvement of these functions. In the recent years, ML-based models have gained popularity in areas such as robotics, natural language processing, manufacturing, logistic and maintenance management. They have proven to be efficient in these complex domains in which the relation between some variables is sometimes unknown or in which the problem dimensionality and the solution space are high. Accordingly, in this thesis, we propose a maintenance and a logistic model based upon Machine Learning technics (ML) that have the capacity of dealing with the complexity of the problems approached when some real-life characteristics are taken into account. The first proposed model is based upon Deep Learning and aims to classify e- commerce orders in dropshipping systems as soon as they are placed on the internet. The model fulfils the gap in the literature in which models force e-taler to cumulate batches of orders before engaging in any order classification and inventory rationing. The second model is a Condition-based maintenance policy for multi-component systems based upon Deep Reinforcement Learning and Goal Programming. The model fulfills a gap in the literature in which real industrial system factors such as multiple degradation states, imperfect maintenance and multiple conflicting criteria are not considered. In order to validate the efficacy of each model, numerical experiments and sensitivity analyses were conducted using simulation. Results showed that the proposed models enable the improvement of key indicator performances such as order fulfilment rate, total e- tailer’s profit, maintenance cost rate and average system’s reliability, in different scenarios. |
id |
UFPE_9a813d0bff2da88b0bc63697a3ceb1e6 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/43731 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
|
spelling |
GONZÁLEZ, Hanser Steven Jiménezhttp://lattes.cnpq.br/7385187158166455http://lattes.cnpq.br/6312739422908628CAVALCANTE, Cristiano Alexandre VirgínioDO, Phuc2022-04-07T17:57:37Z2022-04-07T17:57:37Z2021-12-22JIMÉNEZ GONZÁLEZ, Hanser Steven. A contribution to machine learning applications in logistics and maintenance problems. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/43731As the time goes by, organizations acknowledge more and more the role of business support functions for the achievement of competitiveness and a sustainable performance. Considering that, it is important to propose novel mathematical models that enable the improvement of these functions. In the recent years, ML-based models have gained popularity in areas such as robotics, natural language processing, manufacturing, logistic and maintenance management. They have proven to be efficient in these complex domains in which the relation between some variables is sometimes unknown or in which the problem dimensionality and the solution space are high. Accordingly, in this thesis, we propose a maintenance and a logistic model based upon Machine Learning technics (ML) that have the capacity of dealing with the complexity of the problems approached when some real-life characteristics are taken into account. The first proposed model is based upon Deep Learning and aims to classify e- commerce orders in dropshipping systems as soon as they are placed on the internet. The model fulfils the gap in the literature in which models force e-taler to cumulate batches of orders before engaging in any order classification and inventory rationing. The second model is a Condition-based maintenance policy for multi-component systems based upon Deep Reinforcement Learning and Goal Programming. The model fulfills a gap in the literature in which real industrial system factors such as multiple degradation states, imperfect maintenance and multiple conflicting criteria are not considered. In order to validate the efficacy of each model, numerical experiments and sensitivity analyses were conducted using simulation. Results showed that the proposed models enable the improvement of key indicator performances such as order fulfilment rate, total e- tailer’s profit, maintenance cost rate and average system’s reliability, in different scenarios.CAPESCom o passar do tempo, as organizações reconhecem cada vez mais o papel das funções de suporte no alcance da competitividade e de um desempenho sustentável. Diante disso, é importante propor novos modelos matemáticos que possibilitem o aprimoramento dessas funções. Nos últimos anos, os modelos baseados em aprendizagem de máquina (ML) têm ganhado popularidade em diversas áreas tais como a robótica, o processamento de linguagem natural, a manufatura, a logística e o gerenciamento da manutenção. Esses modelos têm se mostrado eficientes nesses domínios complexos em que a relação entre algumas variáveis é desconhecida ou em que a dimensionalidade do problema e o espaço de soluções são grandes. Nesse sentido, esta tese propõe um modelo de logística e outro de manutenção baseados em aprendizado de máquina. Estes modelos têm a capacidade de lidar com a complexidade dos problemas abordados quando algumas características realistas são consideradas. O primeiro modelo proposto é baseado em aprendizagem profundo e visa classificar os pedidos de e-commerce em sistemas de dropshipping imediatamente após o recebimento no sitio web. Este modelo preenche uma lacuna da literatura em que os modelos forçam os varejistas a acumular lotes de pedidos antes de classificá-los ou de fazer a alocação do estoque. O segundo modelo é uma política de manutenção baseada na condição para sistemas de múltiplos componentes, baseado no aprendizado profundo por reforço e na programação por metas. O modelo preenche uma lacuna na literatura em que alguns fatores de sistemas industriais reais, tais como múltiplos estados de degradação, manutenção imperfeita, e critérios múltiplos e conflitantes, não são considerados. Para validar a eficácia de cada modelo, foram conduzidos experimentos numéricos e analises de sensibilidade usando simulação. Os resultados mostram que os modelos propostos possibilitam a melhoria do desempenho de indicadores-chave, tais como a taxa de atendimento de pedidos, o lucro total, a taxa de custo de manutenção e a confiabilidade média do sistema, em diferentes cenários.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia de ProducaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessEngenharia de ProduçãoAprendizagem profundaRacionamento de estoqueDropshippingAprendizagem profunda por reforçoSistemas de múltiplos componentesManutenção imperfeitaA contribution to machine learning applications in logistics and maintenance problemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Hanser Steven Jiménez González.pdfTESE Hanser Steven Jiménez González.pdfapplication/pdf1283860https://repositorio.ufpe.br/bitstream/123456789/43731/1/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf6f67d12685b35b8cbab71b43c65c3bf1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/43731/3/license.txt6928b9260b07fb2755249a5ca9903395MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/43731/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52TEXTTESE Hanser Steven Jiménez González.pdf.txtTESE Hanser Steven Jiménez González.pdf.txtExtracted texttext/plain203052https://repositorio.ufpe.br/bitstream/123456789/43731/4/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf.txtc3fd60819fe71dba23bfeaa0b0fc8540MD54THUMBNAILTESE Hanser Steven Jiménez González.pdf.jpgTESE Hanser Steven Jiménez González.pdf.jpgGenerated Thumbnailimage/jpeg1229https://repositorio.ufpe.br/bitstream/123456789/43731/5/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf.jpg3f7640efdb02ffb9e20730087b03fee3MD55123456789/437312022-04-08 02:10:58.785oai:repositorio.ufpe.br:123456789/43731VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-04-08T05:10:58Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
A contribution to machine learning applications in logistics and maintenance problems |
title |
A contribution to machine learning applications in logistics and maintenance problems |
spellingShingle |
A contribution to machine learning applications in logistics and maintenance problems GONZÁLEZ, Hanser Steven Jiménez Engenharia de Produção Aprendizagem profunda Racionamento de estoque Dropshipping Aprendizagem profunda por reforço Sistemas de múltiplos componentes Manutenção imperfeita |
title_short |
A contribution to machine learning applications in logistics and maintenance problems |
title_full |
A contribution to machine learning applications in logistics and maintenance problems |
title_fullStr |
A contribution to machine learning applications in logistics and maintenance problems |
title_full_unstemmed |
A contribution to machine learning applications in logistics and maintenance problems |
title_sort |
A contribution to machine learning applications in logistics and maintenance problems |
author |
GONZÁLEZ, Hanser Steven Jiménez |
author_facet |
GONZÁLEZ, Hanser Steven Jiménez |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7385187158166455 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6312739422908628 |
dc.contributor.author.fl_str_mv |
GONZÁLEZ, Hanser Steven Jiménez |
dc.contributor.advisor1.fl_str_mv |
CAVALCANTE, Cristiano Alexandre Virgínio |
dc.contributor.advisor-co1.fl_str_mv |
DO, Phuc |
contributor_str_mv |
CAVALCANTE, Cristiano Alexandre Virgínio DO, Phuc |
dc.subject.por.fl_str_mv |
Engenharia de Produção Aprendizagem profunda Racionamento de estoque Dropshipping Aprendizagem profunda por reforço Sistemas de múltiplos componentes Manutenção imperfeita |
topic |
Engenharia de Produção Aprendizagem profunda Racionamento de estoque Dropshipping Aprendizagem profunda por reforço Sistemas de múltiplos componentes Manutenção imperfeita |
description |
As the time goes by, organizations acknowledge more and more the role of business support functions for the achievement of competitiveness and a sustainable performance. Considering that, it is important to propose novel mathematical models that enable the improvement of these functions. In the recent years, ML-based models have gained popularity in areas such as robotics, natural language processing, manufacturing, logistic and maintenance management. They have proven to be efficient in these complex domains in which the relation between some variables is sometimes unknown or in which the problem dimensionality and the solution space are high. Accordingly, in this thesis, we propose a maintenance and a logistic model based upon Machine Learning technics (ML) that have the capacity of dealing with the complexity of the problems approached when some real-life characteristics are taken into account. The first proposed model is based upon Deep Learning and aims to classify e- commerce orders in dropshipping systems as soon as they are placed on the internet. The model fulfils the gap in the literature in which models force e-taler to cumulate batches of orders before engaging in any order classification and inventory rationing. The second model is a Condition-based maintenance policy for multi-component systems based upon Deep Reinforcement Learning and Goal Programming. The model fulfills a gap in the literature in which real industrial system factors such as multiple degradation states, imperfect maintenance and multiple conflicting criteria are not considered. In order to validate the efficacy of each model, numerical experiments and sensitivity analyses were conducted using simulation. Results showed that the proposed models enable the improvement of key indicator performances such as order fulfilment rate, total e- tailer’s profit, maintenance cost rate and average system’s reliability, in different scenarios. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-12-22 |
dc.date.accessioned.fl_str_mv |
2022-04-07T17:57:37Z |
dc.date.available.fl_str_mv |
2022-04-07T17:57:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
JIMÉNEZ GONZÁLEZ, Hanser Steven. A contribution to machine learning applications in logistics and maintenance problems. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/43731 |
identifier_str_mv |
JIMÉNEZ GONZÁLEZ, Hanser Steven. A contribution to machine learning applications in logistics and maintenance problems. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021. |
url |
https://repositorio.ufpe.br/handle/123456789/43731 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia de Producao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/43731/1/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf https://repositorio.ufpe.br/bitstream/123456789/43731/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/43731/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/43731/4/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/43731/5/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf.jpg |
bitstream.checksum.fl_str_mv |
6f67d12685b35b8cbab71b43c65c3bf1 6928b9260b07fb2755249a5ca9903395 e39d27027a6cc9cb039ad269a5db8e34 c3fd60819fe71dba23bfeaa0b0fc8540 3f7640efdb02ffb9e20730087b03fee3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1802311165367287808 |