A contribution to machine learning applications in logistics and maintenance problems

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: GONZÁLEZ, Hanser Steven Jiménez
Orientador(a): CAVALCANTE, Cristiano Alexandre Virgínio
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso embargado
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Engenharia de Producao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/43731
Resumo: As the time goes by, organizations acknowledge more and more the role of business support functions for the achievement of competitiveness and a sustainable performance. Considering that, it is important to propose novel mathematical models that enable the improvement of these functions. In the recent years, ML-based models have gained popularity in areas such as robotics, natural language processing, manufacturing, logistic and maintenance management. They have proven to be efficient in these complex domains in which the relation between some variables is sometimes unknown or in which the problem dimensionality and the solution space are high. Accordingly, in this thesis, we propose a maintenance and a logistic model based upon Machine Learning technics (ML) that have the capacity of dealing with the complexity of the problems approached when some real-life characteristics are taken into account. The first proposed model is based upon Deep Learning and aims to classify e- commerce orders in dropshipping systems as soon as they are placed on the internet. The model fulfils the gap in the literature in which models force e-taler to cumulate batches of orders before engaging in any order classification and inventory rationing. The second model is a Condition-based maintenance policy for multi-component systems based upon Deep Reinforcement Learning and Goal Programming. The model fulfills a gap in the literature in which real industrial system factors such as multiple degradation states, imperfect maintenance and multiple conflicting criteria are not considered. In order to validate the efficacy of each model, numerical experiments and sensitivity analyses were conducted using simulation. Results showed that the proposed models enable the improvement of key indicator performances such as order fulfilment rate, total e- tailer’s profit, maintenance cost rate and average system’s reliability, in different scenarios.
id UFPE_9a813d0bff2da88b0bc63697a3ceb1e6
oai_identifier_str oai:repositorio.ufpe.br:123456789/43731
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling GONZÁLEZ, Hanser Steven Jiménezhttp://lattes.cnpq.br/7385187158166455http://lattes.cnpq.br/6312739422908628CAVALCANTE, Cristiano Alexandre VirgínioDO, Phuc2022-04-07T17:57:37Z2022-04-07T17:57:37Z2021-12-22JIMÉNEZ GONZÁLEZ, Hanser Steven. A contribution to machine learning applications in logistics and maintenance problems. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/43731As the time goes by, organizations acknowledge more and more the role of business support functions for the achievement of competitiveness and a sustainable performance. Considering that, it is important to propose novel mathematical models that enable the improvement of these functions. In the recent years, ML-based models have gained popularity in areas such as robotics, natural language processing, manufacturing, logistic and maintenance management. They have proven to be efficient in these complex domains in which the relation between some variables is sometimes unknown or in which the problem dimensionality and the solution space are high. Accordingly, in this thesis, we propose a maintenance and a logistic model based upon Machine Learning technics (ML) that have the capacity of dealing with the complexity of the problems approached when some real-life characteristics are taken into account. The first proposed model is based upon Deep Learning and aims to classify e- commerce orders in dropshipping systems as soon as they are placed on the internet. The model fulfils the gap in the literature in which models force e-taler to cumulate batches of orders before engaging in any order classification and inventory rationing. The second model is a Condition-based maintenance policy for multi-component systems based upon Deep Reinforcement Learning and Goal Programming. The model fulfills a gap in the literature in which real industrial system factors such as multiple degradation states, imperfect maintenance and multiple conflicting criteria are not considered. In order to validate the efficacy of each model, numerical experiments and sensitivity analyses were conducted using simulation. Results showed that the proposed models enable the improvement of key indicator performances such as order fulfilment rate, total e- tailer’s profit, maintenance cost rate and average system’s reliability, in different scenarios.CAPESCom o passar do tempo, as organizações reconhecem cada vez mais o papel das funções de suporte no alcance da competitividade e de um desempenho sustentável. Diante disso, é importante propor novos modelos matemáticos que possibilitem o aprimoramento dessas funções. Nos últimos anos, os modelos baseados em aprendizagem de máquina (ML) têm ganhado popularidade em diversas áreas tais como a robótica, o processamento de linguagem natural, a manufatura, a logística e o gerenciamento da manutenção. Esses modelos têm se mostrado eficientes nesses domínios complexos em que a relação entre algumas variáveis é desconhecida ou em que a dimensionalidade do problema e o espaço de soluções são grandes. Nesse sentido, esta tese propõe um modelo de logística e outro de manutenção baseados em aprendizado de máquina. Estes modelos têm a capacidade de lidar com a complexidade dos problemas abordados quando algumas características realistas são consideradas. O primeiro modelo proposto é baseado em aprendizagem profundo e visa classificar os pedidos de e-commerce em sistemas de dropshipping imediatamente após o recebimento no sitio web. Este modelo preenche uma lacuna da literatura em que os modelos forçam os varejistas a acumular lotes de pedidos antes de classificá-los ou de fazer a alocação do estoque. O segundo modelo é uma política de manutenção baseada na condição para sistemas de múltiplos componentes, baseado no aprendizado profundo por reforço e na programação por metas. O modelo preenche uma lacuna na literatura em que alguns fatores de sistemas industriais reais, tais como múltiplos estados de degradação, manutenção imperfeita, e critérios múltiplos e conflitantes, não são considerados. Para validar a eficácia de cada modelo, foram conduzidos experimentos numéricos e analises de sensibilidade usando simulação. Os resultados mostram que os modelos propostos possibilitam a melhoria do desempenho de indicadores-chave, tais como a taxa de atendimento de pedidos, o lucro total, a taxa de custo de manutenção e a confiabilidade média do sistema, em diferentes cenários.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia de ProducaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessEngenharia de ProduçãoAprendizagem profundaRacionamento de estoqueDropshippingAprendizagem profunda por reforçoSistemas de múltiplos componentesManutenção imperfeitaA contribution to machine learning applications in logistics and maintenance problemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Hanser Steven Jiménez González.pdfTESE Hanser Steven Jiménez González.pdfapplication/pdf1283860https://repositorio.ufpe.br/bitstream/123456789/43731/1/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf6f67d12685b35b8cbab71b43c65c3bf1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/43731/3/license.txt6928b9260b07fb2755249a5ca9903395MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/43731/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52TEXTTESE Hanser Steven Jiménez González.pdf.txtTESE Hanser Steven Jiménez González.pdf.txtExtracted texttext/plain203052https://repositorio.ufpe.br/bitstream/123456789/43731/4/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf.txtc3fd60819fe71dba23bfeaa0b0fc8540MD54THUMBNAILTESE Hanser Steven Jiménez González.pdf.jpgTESE Hanser Steven Jiménez González.pdf.jpgGenerated Thumbnailimage/jpeg1229https://repositorio.ufpe.br/bitstream/123456789/43731/5/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf.jpg3f7640efdb02ffb9e20730087b03fee3MD55123456789/437312022-04-08 02:10:58.785oai:repositorio.ufpe.br:123456789/43731VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-04-08T05:10:58Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv A contribution to machine learning applications in logistics and maintenance problems
title A contribution to machine learning applications in logistics and maintenance problems
spellingShingle A contribution to machine learning applications in logistics and maintenance problems
GONZÁLEZ, Hanser Steven Jiménez
Engenharia de Produção
Aprendizagem profunda
Racionamento de estoque
Dropshipping
Aprendizagem profunda por reforço
Sistemas de múltiplos componentes
Manutenção imperfeita
title_short A contribution to machine learning applications in logistics and maintenance problems
title_full A contribution to machine learning applications in logistics and maintenance problems
title_fullStr A contribution to machine learning applications in logistics and maintenance problems
title_full_unstemmed A contribution to machine learning applications in logistics and maintenance problems
title_sort A contribution to machine learning applications in logistics and maintenance problems
author GONZÁLEZ, Hanser Steven Jiménez
author_facet GONZÁLEZ, Hanser Steven Jiménez
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7385187158166455
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6312739422908628
dc.contributor.author.fl_str_mv GONZÁLEZ, Hanser Steven Jiménez
dc.contributor.advisor1.fl_str_mv CAVALCANTE, Cristiano Alexandre Virgínio
dc.contributor.advisor-co1.fl_str_mv DO, Phuc
contributor_str_mv CAVALCANTE, Cristiano Alexandre Virgínio
DO, Phuc
dc.subject.por.fl_str_mv Engenharia de Produção
Aprendizagem profunda
Racionamento de estoque
Dropshipping
Aprendizagem profunda por reforço
Sistemas de múltiplos componentes
Manutenção imperfeita
topic Engenharia de Produção
Aprendizagem profunda
Racionamento de estoque
Dropshipping
Aprendizagem profunda por reforço
Sistemas de múltiplos componentes
Manutenção imperfeita
description As the time goes by, organizations acknowledge more and more the role of business support functions for the achievement of competitiveness and a sustainable performance. Considering that, it is important to propose novel mathematical models that enable the improvement of these functions. In the recent years, ML-based models have gained popularity in areas such as robotics, natural language processing, manufacturing, logistic and maintenance management. They have proven to be efficient in these complex domains in which the relation between some variables is sometimes unknown or in which the problem dimensionality and the solution space are high. Accordingly, in this thesis, we propose a maintenance and a logistic model based upon Machine Learning technics (ML) that have the capacity of dealing with the complexity of the problems approached when some real-life characteristics are taken into account. The first proposed model is based upon Deep Learning and aims to classify e- commerce orders in dropshipping systems as soon as they are placed on the internet. The model fulfils the gap in the literature in which models force e-taler to cumulate batches of orders before engaging in any order classification and inventory rationing. The second model is a Condition-based maintenance policy for multi-component systems based upon Deep Reinforcement Learning and Goal Programming. The model fulfills a gap in the literature in which real industrial system factors such as multiple degradation states, imperfect maintenance and multiple conflicting criteria are not considered. In order to validate the efficacy of each model, numerical experiments and sensitivity analyses were conducted using simulation. Results showed that the proposed models enable the improvement of key indicator performances such as order fulfilment rate, total e- tailer’s profit, maintenance cost rate and average system’s reliability, in different scenarios.
publishDate 2021
dc.date.issued.fl_str_mv 2021-12-22
dc.date.accessioned.fl_str_mv 2022-04-07T17:57:37Z
dc.date.available.fl_str_mv 2022-04-07T17:57:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv JIMÉNEZ GONZÁLEZ, Hanser Steven. A contribution to machine learning applications in logistics and maintenance problems. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/43731
identifier_str_mv JIMÉNEZ GONZÁLEZ, Hanser Steven. A contribution to machine learning applications in logistics and maintenance problems. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021.
url https://repositorio.ufpe.br/handle/123456789/43731
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Engenharia de Producao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/43731/1/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf
https://repositorio.ufpe.br/bitstream/123456789/43731/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/43731/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/43731/4/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/43731/5/TESE%20Hanser%20Steven%20Jim%c3%a9nez%20Gonz%c3%a1lez.pdf.jpg
bitstream.checksum.fl_str_mv 6f67d12685b35b8cbab71b43c65c3bf1
6928b9260b07fb2755249a5ca9903395
e39d27027a6cc9cb039ad269a5db8e34
c3fd60819fe71dba23bfeaa0b0fc8540
3f7640efdb02ffb9e20730087b03fee3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1802311165367287808