Chirp-Based decompositions for computing fractional fourier transforms

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: HUAMPO, Eulogio Gutierrez
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia Eletrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/67710
Resumo: The fractional Fourier transform (FrFT) is a tool for analyzing non-stationary signals, associated with rotations of signal representations through energy distributions in the time-frequency plane. The main numerical algorithm for computing the FrFT is derived from its integral definition and, through sampling, produces a form of discrete FrFT (DFrFT). This thesis focuses on the study of this type of DFrFT and chirp signals, both of which are relevant in various modern systems. There are two chirp-based decompositions for computing the DFrFT: (i) one using chirp convolution and (ii) another relying solely on a discrete Fourier transform (DFT); both are typically implemented via fast Fourier transform (FFT) algorithms. The first contribution of this thesis is the implementation of a simplified FrFT(SmFrFT), with variable frequency scaling, in normalized domains. It is demonstrated that SmFrFT, being a particular case of canonical linear transforms, exhibits distinct properties compared to conventional FrFT and offers advantages in chirp signal processing; the reduction in the number of complex multiplications is approximately 77%. The second contribution of this thesis consists of the reformulation of the previously mentioned chirp convolution as a circular convolution, represented over the ring of integers modulo 2b + 1. In this context, an algorithm for computing partial points of an N-point DFrFT based on a 2D convolution scheme is introduced; in this case, it is possible to reduce computational complexity by at least 4N multiplications by employing local circular convolution instead of its global version. This approach includes the use of the Fermat Number Transform (FNT), for which local input and output optimizations are proposed to avoid operations involving zero values and to compute only the points of interest. Numerical simulations, including applications in radar echo modeling, are presented to validate the effectiveness of the proposed algorithm. As a final contribution, the SmFrFT is applied to direction-of-arrival (DoA) estimation of wideband chirp signals in scenarios involving one or multiple targets using a uniform linear array. The multi-target case is reformulated as a multi-line fitting problem. In this context, two innovative approaches are considered: piecewise slope fitting and line detection in the Hough space. Numerical simulations demonstrate that both methods achieve low computational complexity. However, for high-precision scenarios, the ESPRIT algorithm with spatial smoothing, incorporating the discrete SmFrFT, is recommended, where a novel preprocessing step—a peak alignment procedure in the fractional Fourier domain—is introduced
id UFPE_a3c9c59f251d68c61d643602ee90c63f
oai_identifier_str oai:repositorio.ufpe.br:123456789/67710
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Chirp-Based decompositions for computing fractional fourier transformsTransformada fracionária de FourierTransformada numérica de FermatEstimativa da direção de chegadaAjuste de múltiplas retasChirp linear de banda largaThe fractional Fourier transform (FrFT) is a tool for analyzing non-stationary signals, associated with rotations of signal representations through energy distributions in the time-frequency plane. The main numerical algorithm for computing the FrFT is derived from its integral definition and, through sampling, produces a form of discrete FrFT (DFrFT). This thesis focuses on the study of this type of DFrFT and chirp signals, both of which are relevant in various modern systems. There are two chirp-based decompositions for computing the DFrFT: (i) one using chirp convolution and (ii) another relying solely on a discrete Fourier transform (DFT); both are typically implemented via fast Fourier transform (FFT) algorithms. The first contribution of this thesis is the implementation of a simplified FrFT(SmFrFT), with variable frequency scaling, in normalized domains. It is demonstrated that SmFrFT, being a particular case of canonical linear transforms, exhibits distinct properties compared to conventional FrFT and offers advantages in chirp signal processing; the reduction in the number of complex multiplications is approximately 77%. The second contribution of this thesis consists of the reformulation of the previously mentioned chirp convolution as a circular convolution, represented over the ring of integers modulo 2b + 1. In this context, an algorithm for computing partial points of an N-point DFrFT based on a 2D convolution scheme is introduced; in this case, it is possible to reduce computational complexity by at least 4N multiplications by employing local circular convolution instead of its global version. This approach includes the use of the Fermat Number Transform (FNT), for which local input and output optimizations are proposed to avoid operations involving zero values and to compute only the points of interest. Numerical simulations, including applications in radar echo modeling, are presented to validate the effectiveness of the proposed algorithm. As a final contribution, the SmFrFT is applied to direction-of-arrival (DoA) estimation of wideband chirp signals in scenarios involving one or multiple targets using a uniform linear array. The multi-target case is reformulated as a multi-line fitting problem. In this context, two innovative approaches are considered: piecewise slope fitting and line detection in the Hough space. Numerical simulations demonstrate that both methods achieve low computational complexity. However, for high-precision scenarios, the ESPRIT algorithm with spatial smoothing, incorporating the discrete SmFrFT, is recommended, where a novel preprocessing step—a peak alignment procedure in the fractional Fourier domain—is introducedCAPESA transformada fracionária de Fourier (FrFT, do inglês fractional Fourier transform) é uma ferramenta para análise de sinais não estacionários, associada a rotações da representação de sinais por meio de distribuições de energia no plano tempo-frequência. O principal algoritmo numérico para cálculo da FrFT parte da definição integral dessa transformada e, empregando amostragem, produz uma espécie de FrFT discreta (DFrFT). Esta tese é centrada no estudo deste tipo de DFrFT e em sinais chirp, ambos relevantes em diversos sistemas modernos. Existem duas decomposições baseadas em modulações chirp para cálculo da DFrFT: (i) uma utilizando convolução chirp e (ii) outra usando apenas uma transformada discreta de Fourier (DFT, do inglês discrete Fourier transform); ambas geralmente implementadas por meio de transformadas rápidas de Fourier (FFT, do inglês fast Fourier transform). A primeira contribuição desta tese é a implementação de uma FrFT simplificada (SmFrFT), com escalonamento de frequência variável, em domínios normalizados. Demonstra-se que a SmFrFT, sendo um caso particular das transformações lineares canônicas, exibe propriedades distintas em comparação à FrFT convencional e oferece vantagens no processamento do sinal chirp; com uma redução no número de multiplicações complexas que pode atingir aproximadamente 77%. A segunda contribuição desta tese consiste na reformulação da convolução chirp mencionada anteriormente como uma convolução circular, representada sobre o anel dos inteiros módulo 2b + 1. Nesse contexto, é apresentado um algoritmo para calcular pontos parciais de uma DFrFT de N pontos com base em um esquema de convolução 2D; nesse caso, é possível reduzir a complexidade do cálculo em pelo menos 4N multiplicações ao utilizar convolução circular local em vez da sua versão global. Essa abordagem inclui o uso a transformada numérica de Fermat (FNT, do inglês Fermat number transform), para o qual são propostas otimizações locais de entrada e saída, a f imdeevitar operações com valores nulos e calcular apenas os pontos de interesse. Simulações numéricas, incluindo aplicações em modelagem de eco de radar, são apresentadas para verificar a eficácia do algoritmo proposto. Como contribuição final, a SmFrFT é aplicada à estimação da direção de chegada (DoA, do inglês direction-of-arrival) de sinais chirp de banda larga em cenários com um ou múltiplos alvos, utilizando um arranjo linear uniforme. O caso com múltiplos alvos é reformulado como um problema de ajuste de múltiplas retas. Nesse contexto, duas abordagens inovadoras são consideradas: ajuste de inclinação por partes e detecção de retas no espaço de Hough. As simulações numéricas demonstram que ambos os métodos apresentam baixa complexidade computacional. No entanto, para cenários de alta precisão, recomenda-se o algoritmo ESPRIT com suavização espacial, que incorpora a SmFrFT discreta, no qual uma nova etapa de pré-processamento—um procedimento de alinhamento de picos no domínio da transformada de Fourier fracionária—é proposta.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia EletricaLIMA, Juliano BandeiraOLIVEIRA NETO, José Rodrigues dehttp://lattes.cnpq.br/7715658529303535http://lattes.cnpq.br/2782095059190056http://lattes.cnpq.br/6200149790353238https://orcid.org/0000-0002-7999-6300https://orcid.org/0000-0002-1474-1147http://lattes.cnpq.br/6200149790353238HUAMPO, Eulogio Gutierrez2026-01-20T11:46:48Z2026-01-20T11:46:48Z2025-09-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfHUAMPO, Eulogio Gutierrez. Chirp-Based decompositions for computing fractional fourier transforms. 2025. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Pernambuco, Recife, 2025.https://repositorio.ufpe.br/handle/123456789/67710enghttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2026-01-25T19:55:12Zoai:repositorio.ufpe.br:123456789/67710Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212026-01-25T19:55:12Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Chirp-Based decompositions for computing fractional fourier transforms
title Chirp-Based decompositions for computing fractional fourier transforms
spellingShingle Chirp-Based decompositions for computing fractional fourier transforms
HUAMPO, Eulogio Gutierrez
Transformada fracionária de Fourier
Transformada numérica de Fermat
Estimativa da direção de chegada
Ajuste de múltiplas retas
Chirp linear de banda larga
title_short Chirp-Based decompositions for computing fractional fourier transforms
title_full Chirp-Based decompositions for computing fractional fourier transforms
title_fullStr Chirp-Based decompositions for computing fractional fourier transforms
title_full_unstemmed Chirp-Based decompositions for computing fractional fourier transforms
title_sort Chirp-Based decompositions for computing fractional fourier transforms
author HUAMPO, Eulogio Gutierrez
author_facet HUAMPO, Eulogio Gutierrez
author_role author
dc.contributor.none.fl_str_mv LIMA, Juliano Bandeira
OLIVEIRA NETO, José Rodrigues de
http://lattes.cnpq.br/7715658529303535
http://lattes.cnpq.br/2782095059190056
http://lattes.cnpq.br/6200149790353238
https://orcid.org/0000-0002-7999-6300
https://orcid.org/0000-0002-1474-1147
http://lattes.cnpq.br/6200149790353238
dc.contributor.author.fl_str_mv HUAMPO, Eulogio Gutierrez
dc.subject.por.fl_str_mv Transformada fracionária de Fourier
Transformada numérica de Fermat
Estimativa da direção de chegada
Ajuste de múltiplas retas
Chirp linear de banda larga
topic Transformada fracionária de Fourier
Transformada numérica de Fermat
Estimativa da direção de chegada
Ajuste de múltiplas retas
Chirp linear de banda larga
description The fractional Fourier transform (FrFT) is a tool for analyzing non-stationary signals, associated with rotations of signal representations through energy distributions in the time-frequency plane. The main numerical algorithm for computing the FrFT is derived from its integral definition and, through sampling, produces a form of discrete FrFT (DFrFT). This thesis focuses on the study of this type of DFrFT and chirp signals, both of which are relevant in various modern systems. There are two chirp-based decompositions for computing the DFrFT: (i) one using chirp convolution and (ii) another relying solely on a discrete Fourier transform (DFT); both are typically implemented via fast Fourier transform (FFT) algorithms. The first contribution of this thesis is the implementation of a simplified FrFT(SmFrFT), with variable frequency scaling, in normalized domains. It is demonstrated that SmFrFT, being a particular case of canonical linear transforms, exhibits distinct properties compared to conventional FrFT and offers advantages in chirp signal processing; the reduction in the number of complex multiplications is approximately 77%. The second contribution of this thesis consists of the reformulation of the previously mentioned chirp convolution as a circular convolution, represented over the ring of integers modulo 2b + 1. In this context, an algorithm for computing partial points of an N-point DFrFT based on a 2D convolution scheme is introduced; in this case, it is possible to reduce computational complexity by at least 4N multiplications by employing local circular convolution instead of its global version. This approach includes the use of the Fermat Number Transform (FNT), for which local input and output optimizations are proposed to avoid operations involving zero values and to compute only the points of interest. Numerical simulations, including applications in radar echo modeling, are presented to validate the effectiveness of the proposed algorithm. As a final contribution, the SmFrFT is applied to direction-of-arrival (DoA) estimation of wideband chirp signals in scenarios involving one or multiple targets using a uniform linear array. The multi-target case is reformulated as a multi-line fitting problem. In this context, two innovative approaches are considered: piecewise slope fitting and line detection in the Hough space. Numerical simulations demonstrate that both methods achieve low computational complexity. However, for high-precision scenarios, the ESPRIT algorithm with spatial smoothing, incorporating the discrete SmFrFT, is recommended, where a novel preprocessing step—a peak alignment procedure in the fractional Fourier domain—is introduced
publishDate 2025
dc.date.none.fl_str_mv 2025-09-03
2026-01-20T11:46:48Z
2026-01-20T11:46:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv HUAMPO, Eulogio Gutierrez. Chirp-Based decompositions for computing fractional fourier transforms. 2025. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Pernambuco, Recife, 2025.
https://repositorio.ufpe.br/handle/123456789/67710
identifier_str_mv HUAMPO, Eulogio Gutierrez. Chirp-Based decompositions for computing fractional fourier transforms. 2025. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Pernambuco, Recife, 2025.
url https://repositorio.ufpe.br/handle/123456789/67710
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia Eletrica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia Eletrica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041888548651008