Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: LIMA, Natália Flora De
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/17738
Resumo: Este trabalho apresenta dois novos algoritmos, PSO-FPSO e FPSO-FPSO, para a otimização global de redes neurais MLP (do inglês Multi Layer Perceptron) do tipo feed-forward. O propósito destes algoritmos é otimizar de forma simultânea as arquiteturas e pesos sinápticos, objetivando melhorar a capacidade de generalização da rede neural artificial (RNA). O processo de otimização automática das arquiteturas e pesos de uma rede neural vem recebendo grande atenção na área de aprendizado supervisionado, principalmente em problemas de classificação de padrões. Além dos Algoritmos Genéticos, Busca Tabu, Evolução Diferencial, Recozimento simulado que comumente são empregados no treinamento de redes neurais podemos citar abordagens populacionais como a otimização por colônia de formigas, otimização por colônia de abelhas e otimização por enxame de partículas que vêm sendo largamente utilizadas nesta tarefa. A metodologia utilizada neste trabalho trata da aplicação de dois algoritmos do tipo PSO, sendo empregados na otimização das arquiteturas e na calibração dos pesos das conexões. Nesta abordagem os algoritmos são executados de forma alternada e por um número definido de vezes. Ainda no processo de ajuste dos pesos de uma rede neural MLP foram realizados experimentos com enxame de partículas heterogêneos, que nada mais é que a junção de dois ou mais PSOs de tipos diferentes. Para validar os experimentos com os enxames homogêneos foram utilizadas sete bases de dados para problemas de classificação de padrões, são elas: câncer, diabetes, coração, vidros, cavalos, soja e tireóide. Para os experimentos com enxames heterogêneos foram utilizadas três bases, a saber: câncer, diabetes e coração. O desempenho dos algoritmos foi medido pela média do erro percentual de classificação. Algoritmos da literatura são também considerados. Os resultados mostraram que os algoritmos investigados neste trabalho obtiveram melhor acurácia de classificação quando comparados com os algoritmos da literatura mencionados neste trabalho.
id UFPE_a4aafcedf40807174d0ee4219ebff7d1
oai_identifier_str oai:repositorio.ufpe.br:123456789/17738
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forwardOtimização por Enxame de Partículas. Redes Neurais Artificiais. Enxames HeterogêneosParticle Swarm Optimization. Artificial Neural Networks. Heterogeneous Swarm.Este trabalho apresenta dois novos algoritmos, PSO-FPSO e FPSO-FPSO, para a otimização global de redes neurais MLP (do inglês Multi Layer Perceptron) do tipo feed-forward. O propósito destes algoritmos é otimizar de forma simultânea as arquiteturas e pesos sinápticos, objetivando melhorar a capacidade de generalização da rede neural artificial (RNA). O processo de otimização automática das arquiteturas e pesos de uma rede neural vem recebendo grande atenção na área de aprendizado supervisionado, principalmente em problemas de classificação de padrões. Além dos Algoritmos Genéticos, Busca Tabu, Evolução Diferencial, Recozimento simulado que comumente são empregados no treinamento de redes neurais podemos citar abordagens populacionais como a otimização por colônia de formigas, otimização por colônia de abelhas e otimização por enxame de partículas que vêm sendo largamente utilizadas nesta tarefa. A metodologia utilizada neste trabalho trata da aplicação de dois algoritmos do tipo PSO, sendo empregados na otimização das arquiteturas e na calibração dos pesos das conexões. Nesta abordagem os algoritmos são executados de forma alternada e por um número definido de vezes. Ainda no processo de ajuste dos pesos de uma rede neural MLP foram realizados experimentos com enxame de partículas heterogêneos, que nada mais é que a junção de dois ou mais PSOs de tipos diferentes. Para validar os experimentos com os enxames homogêneos foram utilizadas sete bases de dados para problemas de classificação de padrões, são elas: câncer, diabetes, coração, vidros, cavalos, soja e tireóide. Para os experimentos com enxames heterogêneos foram utilizadas três bases, a saber: câncer, diabetes e coração. O desempenho dos algoritmos foi medido pela média do erro percentual de classificação. Algoritmos da literatura são também considerados. Os resultados mostraram que os algoritmos investigados neste trabalho obtiveram melhor acurácia de classificação quando comparados com os algoritmos da literatura mencionados neste trabalho.FacepeThis research presents two new algorithms, PSO-FPSO e FPSO-FPSO, that can be used in feed-forward MLP (Multi Layer Perceptron) neural networks for global optimization. The purpose of these algorithms is to optimize architectures and synaptic weight, at same time, to improve the capacity of generalization from Artificial Neural Network (ANN). The automatic optimization process of neural network’s architectures and weights has received much attention in supervised learning, mainly in pattern classification problems. Besides the Genetic Algorithms, Tabu Search, Differential Evolution, Simulated Annealing that are commonly used in the training of neural networks we can mentioned population approaches such Ant Colony Optimization, Bee Colony Optimization and Particle Swarm Optimization that have been widely used this task. The methodology applied in this research reports the use of two PSO algorithms, used in architecture optimization and connection weight adjust. In this approach the algorithms are performed alternately and by predefined number of times. Still in the process of adjusting the weights of a MLP neural network experiments were performed with swarm of heterogeneous particles, which is nothing more than the joining of two or more different PSOs. To validate the experiments with homogeneous clusters were used seven databases for pattern classification problems, they are: cancer, diabetes, heart, glasses, horses, soy and thyroid. For the experiments with heterogeneous clusters were used three bases, namely cancer, diabetes and heart. The performance of the algorithms was measured by the average percentage of misclassification, literature algorithms are also considered. The results showed that the algorithms investigated in this research had better accuracy rating compared with some published algorithms.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoLUDERMIR, Teresa BernardaLIMA, Natália Flora De2016-08-24T17:35:05Z2016-08-24T17:35:05Z2011-08-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/17738porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2025-02-11T16:58:54Zoai:repositorio.ufpe.br:123456789/17738Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212025-02-11T16:58:54Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward
title Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward
spellingShingle Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward
LIMA, Natália Flora De
Otimização por Enxame de Partículas. Redes Neurais Artificiais. Enxames Heterogêneos
Particle Swarm Optimization. Artificial Neural Networks. Heterogeneous Swarm.
title_short Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward
title_full Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward
title_fullStr Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward
title_full_unstemmed Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward
title_sort Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward
author LIMA, Natália Flora De
author_facet LIMA, Natália Flora De
author_role author
dc.contributor.none.fl_str_mv LUDERMIR, Teresa Bernarda
dc.contributor.author.fl_str_mv LIMA, Natália Flora De
dc.subject.por.fl_str_mv Otimização por Enxame de Partículas. Redes Neurais Artificiais. Enxames Heterogêneos
Particle Swarm Optimization. Artificial Neural Networks. Heterogeneous Swarm.
topic Otimização por Enxame de Partículas. Redes Neurais Artificiais. Enxames Heterogêneos
Particle Swarm Optimization. Artificial Neural Networks. Heterogeneous Swarm.
description Este trabalho apresenta dois novos algoritmos, PSO-FPSO e FPSO-FPSO, para a otimização global de redes neurais MLP (do inglês Multi Layer Perceptron) do tipo feed-forward. O propósito destes algoritmos é otimizar de forma simultânea as arquiteturas e pesos sinápticos, objetivando melhorar a capacidade de generalização da rede neural artificial (RNA). O processo de otimização automática das arquiteturas e pesos de uma rede neural vem recebendo grande atenção na área de aprendizado supervisionado, principalmente em problemas de classificação de padrões. Além dos Algoritmos Genéticos, Busca Tabu, Evolução Diferencial, Recozimento simulado que comumente são empregados no treinamento de redes neurais podemos citar abordagens populacionais como a otimização por colônia de formigas, otimização por colônia de abelhas e otimização por enxame de partículas que vêm sendo largamente utilizadas nesta tarefa. A metodologia utilizada neste trabalho trata da aplicação de dois algoritmos do tipo PSO, sendo empregados na otimização das arquiteturas e na calibração dos pesos das conexões. Nesta abordagem os algoritmos são executados de forma alternada e por um número definido de vezes. Ainda no processo de ajuste dos pesos de uma rede neural MLP foram realizados experimentos com enxame de partículas heterogêneos, que nada mais é que a junção de dois ou mais PSOs de tipos diferentes. Para validar os experimentos com os enxames homogêneos foram utilizadas sete bases de dados para problemas de classificação de padrões, são elas: câncer, diabetes, coração, vidros, cavalos, soja e tireóide. Para os experimentos com enxames heterogêneos foram utilizadas três bases, a saber: câncer, diabetes e coração. O desempenho dos algoritmos foi medido pela média do erro percentual de classificação. Algoritmos da literatura são também considerados. Os resultados mostraram que os algoritmos investigados neste trabalho obtiveram melhor acurácia de classificação quando comparados com os algoritmos da literatura mencionados neste trabalho.
publishDate 2011
dc.date.none.fl_str_mv 2011-08-29
2016-08-24T17:35:05Z
2016-08-24T17:35:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/17738
url https://repositorio.ufpe.br/handle/123456789/17738
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042080382484480