Estimação pontual e intervalar em um modelo de regressão beta

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Ospina Martinez, Raydonal
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/6573
Resumo: O modelo de regressão beta possui potencialmente aplicabilidade prática, em particular, na modelagem de taxas e proporções. Assim, o cálculo dos vieses dos estimadores dos parâmetros deste modelo torna-se importante, visto que, em geral, para modelos regulares, quanto menores são os tamanhos de amostra, mais viesados são os estimadores de máxima verossimilhança. A obtenção de expressões que permitam calcular os vieses desses estimadores possibilita a obtenção de estimadores corrigidos, que em príncipio são mais precisos que os não corrigidos. O objetivo deste trabalho é fornecer expressões para os vieses de segunda ordem dos estimadores de máxima verossimilhança no modelo de regressão beta proposto por Ferrari & Cribari?Neto (2003). Com a finalidade de reduzir os vieses destes estimadores em amostras finitas, utilizam-se correções de viés obtidas a partir de esquemas analíticos (Cox & Snell,1968; Firth, 1993) e de bootstrap. Deduzimos uma fórmula para o cálculo dos vieses de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros do modelo de regressão beta. Em seguida, fornecemos estimativas corrigidas do tipo corretivo, preventivo e de bootstrap, mostrando numericamente que as estimativas corrigidas de tipo corretivo e de bootstrap apresentam desempenhos superiores em termos de viés e erro médio quadrático `as suas respectivas estimativas de máxima verossimilhança. Apresentamos intervalos de confiança do tipo assintótico, bootstrap percentil e bootstrap BCa para os parâmetros do modelo de regressão beta. A avaliação numérica revelou que os intervalos de tipo percentil para os parâmetros baseados nas estimativas corrigidas apresentam os melhores desempenhos em termos de cobertura, balanceamento e comprimento. Adicionalmente, mostramos que os intervalos de confiança para o parâmetro de precisão são bastante assimétricos, sendo que os intervalos do tipo assintótico baseados nas estimativas de máxima verossimilhança e corrigida corretivamente possuem as melhores coberturas e menores comprimentos
id UFPE_a9fa49de79d6c791e556fc483addd03e
oai_identifier_str oai:repositorio.ufpe.br:123456789/6573
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Estimação pontual e intervalar em um modelo de regressão betaCorreção de viésRegressão betaVerossimilhançaO modelo de regressão beta possui potencialmente aplicabilidade prática, em particular, na modelagem de taxas e proporções. Assim, o cálculo dos vieses dos estimadores dos parâmetros deste modelo torna-se importante, visto que, em geral, para modelos regulares, quanto menores são os tamanhos de amostra, mais viesados são os estimadores de máxima verossimilhança. A obtenção de expressões que permitam calcular os vieses desses estimadores possibilita a obtenção de estimadores corrigidos, que em príncipio são mais precisos que os não corrigidos. O objetivo deste trabalho é fornecer expressões para os vieses de segunda ordem dos estimadores de máxima verossimilhança no modelo de regressão beta proposto por Ferrari & Cribari?Neto (2003). Com a finalidade de reduzir os vieses destes estimadores em amostras finitas, utilizam-se correções de viés obtidas a partir de esquemas analíticos (Cox & Snell,1968; Firth, 1993) e de bootstrap. Deduzimos uma fórmula para o cálculo dos vieses de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros do modelo de regressão beta. Em seguida, fornecemos estimativas corrigidas do tipo corretivo, preventivo e de bootstrap, mostrando numericamente que as estimativas corrigidas de tipo corretivo e de bootstrap apresentam desempenhos superiores em termos de viés e erro médio quadrático `as suas respectivas estimativas de máxima verossimilhança. Apresentamos intervalos de confiança do tipo assintótico, bootstrap percentil e bootstrap BCa para os parâmetros do modelo de regressão beta. A avaliação numérica revelou que os intervalos de tipo percentil para os parâmetros baseados nas estimativas corrigidas apresentam os melhores desempenhos em termos de cobertura, balanceamento e comprimento. Adicionalmente, mostramos que os intervalos de confiança para o parâmetro de precisão são bastante assimétricos, sendo que os intervalos do tipo assintótico baseados nas estimativas de máxima verossimilhança e corrigida corretivamente possuem as melhores coberturas e menores comprimentosConselho Nacional de Desenvolvimento Científico e TecnológicoUniversidade Federal de PernambucoLeite Pinto Vasconcellos, Klaus Ospina Martinez, Raydonal2014-06-12T18:06:11Z2014-06-12T18:06:11Z2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfOspina Martinez, Raydonal; Leite Pinto Vasconcellos, Klaus. Estimação pontual e intervalar em um modelo de regressão beta. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2004.https://repositorio.ufpe.br/handle/123456789/6573porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T06:34:33Zoai:repositorio.ufpe.br:123456789/6573Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T06:34:33Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Estimação pontual e intervalar em um modelo de regressão beta
title Estimação pontual e intervalar em um modelo de regressão beta
spellingShingle Estimação pontual e intervalar em um modelo de regressão beta
Ospina Martinez, Raydonal
Correção de viés
Regressão beta
Verossimilhança
title_short Estimação pontual e intervalar em um modelo de regressão beta
title_full Estimação pontual e intervalar em um modelo de regressão beta
title_fullStr Estimação pontual e intervalar em um modelo de regressão beta
title_full_unstemmed Estimação pontual e intervalar em um modelo de regressão beta
title_sort Estimação pontual e intervalar em um modelo de regressão beta
author Ospina Martinez, Raydonal
author_facet Ospina Martinez, Raydonal
author_role author
dc.contributor.none.fl_str_mv Leite Pinto Vasconcellos, Klaus
dc.contributor.author.fl_str_mv Ospina Martinez, Raydonal
dc.subject.por.fl_str_mv Correção de viés
Regressão beta
Verossimilhança
topic Correção de viés
Regressão beta
Verossimilhança
description O modelo de regressão beta possui potencialmente aplicabilidade prática, em particular, na modelagem de taxas e proporções. Assim, o cálculo dos vieses dos estimadores dos parâmetros deste modelo torna-se importante, visto que, em geral, para modelos regulares, quanto menores são os tamanhos de amostra, mais viesados são os estimadores de máxima verossimilhança. A obtenção de expressões que permitam calcular os vieses desses estimadores possibilita a obtenção de estimadores corrigidos, que em príncipio são mais precisos que os não corrigidos. O objetivo deste trabalho é fornecer expressões para os vieses de segunda ordem dos estimadores de máxima verossimilhança no modelo de regressão beta proposto por Ferrari & Cribari?Neto (2003). Com a finalidade de reduzir os vieses destes estimadores em amostras finitas, utilizam-se correções de viés obtidas a partir de esquemas analíticos (Cox & Snell,1968; Firth, 1993) e de bootstrap. Deduzimos uma fórmula para o cálculo dos vieses de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros do modelo de regressão beta. Em seguida, fornecemos estimativas corrigidas do tipo corretivo, preventivo e de bootstrap, mostrando numericamente que as estimativas corrigidas de tipo corretivo e de bootstrap apresentam desempenhos superiores em termos de viés e erro médio quadrático `as suas respectivas estimativas de máxima verossimilhança. Apresentamos intervalos de confiança do tipo assintótico, bootstrap percentil e bootstrap BCa para os parâmetros do modelo de regressão beta. A avaliação numérica revelou que os intervalos de tipo percentil para os parâmetros baseados nas estimativas corrigidas apresentam os melhores desempenhos em termos de cobertura, balanceamento e comprimento. Adicionalmente, mostramos que os intervalos de confiança para o parâmetro de precisão são bastante assimétricos, sendo que os intervalos do tipo assintótico baseados nas estimativas de máxima verossimilhança e corrigida corretivamente possuem as melhores coberturas e menores comprimentos
publishDate 2004
dc.date.none.fl_str_mv 2004
2014-06-12T18:06:11Z
2014-06-12T18:06:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Ospina Martinez, Raydonal; Leite Pinto Vasconcellos, Klaus. Estimação pontual e intervalar em um modelo de regressão beta. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2004.
https://repositorio.ufpe.br/handle/123456789/6573
identifier_str_mv Ospina Martinez, Raydonal; Leite Pinto Vasconcellos, Klaus. Estimação pontual e intervalar em um modelo de regressão beta. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2004.
url https://repositorio.ufpe.br/handle/123456789/6573
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041889563672576