Clusterização baseada em algoritmos fuzzy

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Lopes Cavalcanti Junior, Nicomedes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2619
Resumo: Análise de cluster é uma técnica aplicada a diversas áreas como mineração de dados, reconhecimento de padrões, processamento de imagens. Algoritmos de clusterização têm por objetivo particionar um conjunto de dados em clusters de tal forma que indivíduos dentro de um mesmo cluster tenham um alto grau de similaridade, enquanto indivíduos pertencentes a diferentes clusters tenham alto grau de dissimilaridade. Uma importante divisão dos algoritmos de clusterização é entre algoritmos hard e fuzzy. Algoritmos hard associam um indivíduo a somente um cluster. Ao contrário, algoritmos fuzzy associam um indivíduo a todos os clusters através da variação do grau de pertinência do indivíduo em cada cluster. A vantagem de um algoritmo clusterização fuzzy é que este pode representar melhor incerteza e este fato é importante, por exemplo, para mostrar que um indivíduo não é um típico indivíduo de nenhuma das classes, mas tem similaridade em maior ou menor grau com mais de uma classe. Uma forma intuitiva de medir similaridade entre indivíduos é usar medidas de distância tais como a distância euclidiana. Existem muitas medidas de distância disponíveis na literatura. Muitos dos algoritmos de clusterização populares geralmente buscam minimizar um critério baseados numa medida de distância. Através de um processo iterativo estes algoritmos calculam parâmetros de modo a diminuir o valor do critério iteração a iteração até um estado de convergência ser atingido. O problema com muitas das distâncias encontradas na literatura é que elas são estáticas. Para o caso de algoritmos de clusterização iterativos, parece razoável ter distâncias que mudem ou atualizem seus valores de acordo com o que for ocorrendo com os dados e as estruturas de dado do algoritmo. Esta dissertação apresenta duas distâncias adaptativas aplicadas ao algoritmo fuzzy c-means pelo Prof. Francisco de Carvalho. Este algoritmo foi escolhido pelo fato de ser amplamente utilizado. Para avaliar as proposições de distância, experimentos foram feitos utilizando-se conjunto de dados de referência e conjuntos de dados artificiais (para ter resultados mais precisos experimentos do tipo Monte Carlo foram realizados neste caso). Até o momento, comparações das versões do fuzzy c-means, obtidas através da utilização de distâncias adaptativas, com algoritmos similares da literatura permitem concluir que em geral as novas versões têm melhor performance que outros disponíveis na literatura
id UFPE_aa404951ef323ad0237cd2e6da582daf
oai_identifier_str oai:repositorio.ufpe.br:123456789/2619
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Clusterização baseada em algoritmos fuzzyMineração de dadosDistância adaptativaAprendizagem de máquinaAgrupamento nebulosoFuzzy c-meansAnálise de cluster é uma técnica aplicada a diversas áreas como mineração de dados, reconhecimento de padrões, processamento de imagens. Algoritmos de clusterização têm por objetivo particionar um conjunto de dados em clusters de tal forma que indivíduos dentro de um mesmo cluster tenham um alto grau de similaridade, enquanto indivíduos pertencentes a diferentes clusters tenham alto grau de dissimilaridade. Uma importante divisão dos algoritmos de clusterização é entre algoritmos hard e fuzzy. Algoritmos hard associam um indivíduo a somente um cluster. Ao contrário, algoritmos fuzzy associam um indivíduo a todos os clusters através da variação do grau de pertinência do indivíduo em cada cluster. A vantagem de um algoritmo clusterização fuzzy é que este pode representar melhor incerteza e este fato é importante, por exemplo, para mostrar que um indivíduo não é um típico indivíduo de nenhuma das classes, mas tem similaridade em maior ou menor grau com mais de uma classe. Uma forma intuitiva de medir similaridade entre indivíduos é usar medidas de distância tais como a distância euclidiana. Existem muitas medidas de distância disponíveis na literatura. Muitos dos algoritmos de clusterização populares geralmente buscam minimizar um critério baseados numa medida de distância. Através de um processo iterativo estes algoritmos calculam parâmetros de modo a diminuir o valor do critério iteração a iteração até um estado de convergência ser atingido. O problema com muitas das distâncias encontradas na literatura é que elas são estáticas. Para o caso de algoritmos de clusterização iterativos, parece razoável ter distâncias que mudem ou atualizem seus valores de acordo com o que for ocorrendo com os dados e as estruturas de dado do algoritmo. Esta dissertação apresenta duas distâncias adaptativas aplicadas ao algoritmo fuzzy c-means pelo Prof. Francisco de Carvalho. Este algoritmo foi escolhido pelo fato de ser amplamente utilizado. Para avaliar as proposições de distância, experimentos foram feitos utilizando-se conjunto de dados de referência e conjuntos de dados artificiais (para ter resultados mais precisos experimentos do tipo Monte Carlo foram realizados neste caso). Até o momento, comparações das versões do fuzzy c-means, obtidas através da utilização de distâncias adaptativas, com algoritmos similares da literatura permitem concluir que em geral as novas versões têm melhor performance que outros disponíveis na literaturaUniversidade Federal de Pernambucode Assis Tenório Carvalho, Francisco Lopes Cavalcanti Junior, Nicomedes2014-06-12T15:59:42Z2014-06-12T15:59:42Z2006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfLopes Cavalcanti Junior, Nicomedes; de Assis Tenório Carvalho, Francisco. Clusterização baseada em algoritmos fuzzy. 2006. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2006.https://repositorio.ufpe.br/handle/123456789/2619porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T05:08:54Zoai:repositorio.ufpe.br:123456789/2619Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:08:54Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Clusterização baseada em algoritmos fuzzy
title Clusterização baseada em algoritmos fuzzy
spellingShingle Clusterização baseada em algoritmos fuzzy
Lopes Cavalcanti Junior, Nicomedes
Mineração de dados
Distância adaptativa
Aprendizagem de máquina
Agrupamento nebuloso
Fuzzy c-means
title_short Clusterização baseada em algoritmos fuzzy
title_full Clusterização baseada em algoritmos fuzzy
title_fullStr Clusterização baseada em algoritmos fuzzy
title_full_unstemmed Clusterização baseada em algoritmos fuzzy
title_sort Clusterização baseada em algoritmos fuzzy
author Lopes Cavalcanti Junior, Nicomedes
author_facet Lopes Cavalcanti Junior, Nicomedes
author_role author
dc.contributor.none.fl_str_mv de Assis Tenório Carvalho, Francisco
dc.contributor.author.fl_str_mv Lopes Cavalcanti Junior, Nicomedes
dc.subject.por.fl_str_mv Mineração de dados
Distância adaptativa
Aprendizagem de máquina
Agrupamento nebuloso
Fuzzy c-means
topic Mineração de dados
Distância adaptativa
Aprendizagem de máquina
Agrupamento nebuloso
Fuzzy c-means
description Análise de cluster é uma técnica aplicada a diversas áreas como mineração de dados, reconhecimento de padrões, processamento de imagens. Algoritmos de clusterização têm por objetivo particionar um conjunto de dados em clusters de tal forma que indivíduos dentro de um mesmo cluster tenham um alto grau de similaridade, enquanto indivíduos pertencentes a diferentes clusters tenham alto grau de dissimilaridade. Uma importante divisão dos algoritmos de clusterização é entre algoritmos hard e fuzzy. Algoritmos hard associam um indivíduo a somente um cluster. Ao contrário, algoritmos fuzzy associam um indivíduo a todos os clusters através da variação do grau de pertinência do indivíduo em cada cluster. A vantagem de um algoritmo clusterização fuzzy é que este pode representar melhor incerteza e este fato é importante, por exemplo, para mostrar que um indivíduo não é um típico indivíduo de nenhuma das classes, mas tem similaridade em maior ou menor grau com mais de uma classe. Uma forma intuitiva de medir similaridade entre indivíduos é usar medidas de distância tais como a distância euclidiana. Existem muitas medidas de distância disponíveis na literatura. Muitos dos algoritmos de clusterização populares geralmente buscam minimizar um critério baseados numa medida de distância. Através de um processo iterativo estes algoritmos calculam parâmetros de modo a diminuir o valor do critério iteração a iteração até um estado de convergência ser atingido. O problema com muitas das distâncias encontradas na literatura é que elas são estáticas. Para o caso de algoritmos de clusterização iterativos, parece razoável ter distâncias que mudem ou atualizem seus valores de acordo com o que for ocorrendo com os dados e as estruturas de dado do algoritmo. Esta dissertação apresenta duas distâncias adaptativas aplicadas ao algoritmo fuzzy c-means pelo Prof. Francisco de Carvalho. Este algoritmo foi escolhido pelo fato de ser amplamente utilizado. Para avaliar as proposições de distância, experimentos foram feitos utilizando-se conjunto de dados de referência e conjuntos de dados artificiais (para ter resultados mais precisos experimentos do tipo Monte Carlo foram realizados neste caso). Até o momento, comparações das versões do fuzzy c-means, obtidas através da utilização de distâncias adaptativas, com algoritmos similares da literatura permitem concluir que em geral as novas versões têm melhor performance que outros disponíveis na literatura
publishDate 2006
dc.date.none.fl_str_mv 2006
2014-06-12T15:59:42Z
2014-06-12T15:59:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Lopes Cavalcanti Junior, Nicomedes; de Assis Tenório Carvalho, Francisco. Clusterização baseada em algoritmos fuzzy. 2006. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2006.
https://repositorio.ufpe.br/handle/123456789/2619
identifier_str_mv Lopes Cavalcanti Junior, Nicomedes; de Assis Tenório Carvalho, Francisco. Clusterização baseada em algoritmos fuzzy. 2006. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2006.
url https://repositorio.ufpe.br/handle/123456789/2619
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041884258926592