Exportação concluída — 

Connection Method for Defeasible Description Logics

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: FERNANDES, Renan Leandro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/63946
Resumo: The modelling of exceptions in ontologies, provided through defeasible logics, and the reasoning behind their presence have received significant attention in the last decade. The development of proof methods for defeasible Description Logics (DLs), following the methods for classi- cal DLs, is mainly based on semantic tableaux. However, the literature offers equally viable alternatives for developing automatic theorem provers, such as the connection method. This method consists of a goal-oriented proof search algorithm for connections (pairs of comple- mentary literals) in sets of literal clauses called a matrix. This thesis presents a connection method for a family of exception-tolerant DLs. The work presents the following contributions: (i) definition of a matrix representation of a knowledge base that establishes conditions for a given axiom to be provable by the matrix; (ii) definition of a blocking condition in the presence of typicality operators; (iii) providing a bond between the matrix structures of the proposed method and the semantics of defeasible DLs; (iv) proofs of correctness, completeness and termination for the proposed inference system, grounded only on the semantics of defeasible description logics; and (v) an architecture of polymorphic connection method provers, Poly- CoP, developed for the ALCH∙ language. Such an architecture can encompass any other logic, with subtle modifications in its methods and classes.
id UFPE_aae1dec6e36000cbb619bf477842deab
oai_identifier_str oai:repositorio.ufpe.br:123456789/63946
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Connection Method for Defeasible Description LogicsConnection methodDescription logicsDefeasible reasoningThe modelling of exceptions in ontologies, provided through defeasible logics, and the reasoning behind their presence have received significant attention in the last decade. The development of proof methods for defeasible Description Logics (DLs), following the methods for classi- cal DLs, is mainly based on semantic tableaux. However, the literature offers equally viable alternatives for developing automatic theorem provers, such as the connection method. This method consists of a goal-oriented proof search algorithm for connections (pairs of comple- mentary literals) in sets of literal clauses called a matrix. This thesis presents a connection method for a family of exception-tolerant DLs. The work presents the following contributions: (i) definition of a matrix representation of a knowledge base that establishes conditions for a given axiom to be provable by the matrix; (ii) definition of a blocking condition in the presence of typicality operators; (iii) providing a bond between the matrix structures of the proposed method and the semantics of defeasible DLs; (iv) proofs of correctness, completeness and termination for the proposed inference system, grounded only on the semantics of defeasible description logics; and (v) an architecture of polymorphic connection method provers, Poly- CoP, developed for the ALCH∙ language. Such an architecture can encompass any other logic, with subtle modifications in its methods and classes.A modelagem de exceções em ontologias, proporcionada através do uso de lógicas anuláveis, e o raciocínio em sua presença recebeu uma significativa atenção na última década. O desen- volvimento de métodos de prova para as Lógicas de Descrições (DLs) anuláveis, seguindo os métodos para as DLs clássicas, é principalmente baseado em tableaux semânticos. No entanto, a literatura apresenta sistemas de inferência alternativos igualmente viáveis para o desenvolvi- mento de provadores de teoremas automáticos, como o método de conexões. Este método consiste em um algoritmo de busca de prova orientado a um objetivo, buscando por conexões (pares de literais complementares) em conjuntos de cláusulas de literais, chamada de matriz. Esta tese apresenta um método de conexões para uma família de DLs tolerante a exceções. O trabalho apresenta as seguintes contribuições: (i) definição de uma representação matricial de uma base de conhecimento que estabelece condições para que um dado axioma seja provado pela matriz; (ii) definição de uma condição de bloqueio na presença de operadores de tipicali- dade; (iii) fornecimento de um vínculo entre as estruturas matriciais do método proposto e a semântica de DLs anuláveis; (iv) provas de corretude, completude e terminação para o sistema de inferência proposto, dependendo apenas da semântica das lógicas de descrições anuláveis; e (v) uma arquitetura de provadores de métodos de conexões polimórficos, o PolyCoP, de- senvolvido para a linguagem ALCH∙ . Tal arquitetura pode abranger possivelmente qualquer outra lógica, com modificações sutis em seus métodos e classes.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoFREITAS, Frederico Luiz Gonçalves deVARZINCZAK, Ivan Joséhttp://lattes.cnpq.br/4329681764449719http://lattes.cnpq.br/6195215666638965http://lattes.cnpq.br/9819688590950504FERNANDES, Renan Leandro2025-06-26T14:07:23Z2025-06-26T14:07:23Z2024-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfFERNANDES, Renan Leandro. Connection Method for Defeasible Description Logics. 2024. Tese (Doutorado em Ciências da Computação) – Universidade Federal de Pernambuco, Recife, 2024.https://repositorio.ufpe.br/handle/123456789/63946enghttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2025-06-29T17:35:15Zoai:repositorio.ufpe.br:123456789/63946Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212025-06-29T17:35:15Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Connection Method for Defeasible Description Logics
title Connection Method for Defeasible Description Logics
spellingShingle Connection Method for Defeasible Description Logics
FERNANDES, Renan Leandro
Connection method
Description logics
Defeasible reasoning
title_short Connection Method for Defeasible Description Logics
title_full Connection Method for Defeasible Description Logics
title_fullStr Connection Method for Defeasible Description Logics
title_full_unstemmed Connection Method for Defeasible Description Logics
title_sort Connection Method for Defeasible Description Logics
author FERNANDES, Renan Leandro
author_facet FERNANDES, Renan Leandro
author_role author
dc.contributor.none.fl_str_mv FREITAS, Frederico Luiz Gonçalves de
VARZINCZAK, Ivan José
http://lattes.cnpq.br/4329681764449719
http://lattes.cnpq.br/6195215666638965
http://lattes.cnpq.br/9819688590950504
dc.contributor.author.fl_str_mv FERNANDES, Renan Leandro
dc.subject.por.fl_str_mv Connection method
Description logics
Defeasible reasoning
topic Connection method
Description logics
Defeasible reasoning
description The modelling of exceptions in ontologies, provided through defeasible logics, and the reasoning behind their presence have received significant attention in the last decade. The development of proof methods for defeasible Description Logics (DLs), following the methods for classi- cal DLs, is mainly based on semantic tableaux. However, the literature offers equally viable alternatives for developing automatic theorem provers, such as the connection method. This method consists of a goal-oriented proof search algorithm for connections (pairs of comple- mentary literals) in sets of literal clauses called a matrix. This thesis presents a connection method for a family of exception-tolerant DLs. The work presents the following contributions: (i) definition of a matrix representation of a knowledge base that establishes conditions for a given axiom to be provable by the matrix; (ii) definition of a blocking condition in the presence of typicality operators; (iii) providing a bond between the matrix structures of the proposed method and the semantics of defeasible DLs; (iv) proofs of correctness, completeness and termination for the proposed inference system, grounded only on the semantics of defeasible description logics; and (v) an architecture of polymorphic connection method provers, Poly- CoP, developed for the ALCH∙ language. Such an architecture can encompass any other logic, with subtle modifications in its methods and classes.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-30
2025-06-26T14:07:23Z
2025-06-26T14:07:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FERNANDES, Renan Leandro. Connection Method for Defeasible Description Logics. 2024. Tese (Doutorado em Ciências da Computação) – Universidade Federal de Pernambuco, Recife, 2024.
https://repositorio.ufpe.br/handle/123456789/63946
identifier_str_mv FERNANDES, Renan Leandro. Connection Method for Defeasible Description Logics. 2024. Tese (Doutorado em Ciências da Computação) – Universidade Federal de Pernambuco, Recife, 2024.
url https://repositorio.ufpe.br/handle/123456789/63946
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041926812237824