Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal
| Ano de defesa: | 2007 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/2707 |
Resumo: | A Análise de Dados Simbólicos (Symbolic Data Analysis) é um domínio na área de descoberta automática de conhecimento que visa desenvolver métodos para dados descritos por variáveis que podem assumir como valor conjuntos ou listas de categorias, intervalos ou distribuições de probabilidade. Essas variáveis permitem levar em conta a variabilidade e/ou a incerteza presente nos dados. Este trabalho apresenta um classificador simbólico de semântica modal para dados simbólicos de tipo intervalo. O classificador proposto apresenta duas etapas básicas, a aprendizagem e a alocação, onde ambas necessitam de uma etapa precedente de préprocessamento que transforma os dados simbólicos do tipo intervalo em dados simbólicos modal. Cada exemplo do conjunto de aprendizagem é descrito por um vetor de intervalos. Após o pré-processamento, cada exemplo passa a ser descrito por um vetor de distribuições de pesos. Após a etapa de aprendizagem, cada classe é também descrita por um vetor de distribuições de pesos que sintetiza as informações dos exemplos da classe. Cada novo exemplo a ser atribuído a uma classe (etapa de alocação), representado por um vetor de intervalos, após a fase de pré-processamento passa a ser descrito por um vetor de distribuições de pesos. A alocação de um exemplo a uma classe é realizada através de funções de dissimilaridade que comparam pares de vetores de distribuições de pesos. Algumas funções de dissimilaridade desse tipo são consideradas nesse trabalho. A avaliação do desempenho desse classificador é realizada através da aplicação do mesmo a conjuntos de dados sintéticos em uma experiência Monte Carlo e a conjuntos de dados reais usando a técnica de validação cruzada leave-one-out. O desempenho é medido pela taxa (média) de erro de classificação e pelo tempo de execução das etapas de aprendizagem e classificação. Além disso, o desempenho desse classificador foi comparado com o desempenho de um classificador de tipo k-vizinhos mais próximos também de semântica modal. Através desses exemplos, esse trabalho mostra alguns dos interesses desse classificador de semântica modal |
| id |
UFPE_b172d5c899c417c070804235230a9bfc |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2707 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Classificação Supervisionada Usando Dados Simbólicos de Semântica ModalAnalise de dados simbólicosClassificador simbólico modalClassificação supervisionadaDados simbólicos modasFunções de dissimilaridadeA Análise de Dados Simbólicos (Symbolic Data Analysis) é um domínio na área de descoberta automática de conhecimento que visa desenvolver métodos para dados descritos por variáveis que podem assumir como valor conjuntos ou listas de categorias, intervalos ou distribuições de probabilidade. Essas variáveis permitem levar em conta a variabilidade e/ou a incerteza presente nos dados. Este trabalho apresenta um classificador simbólico de semântica modal para dados simbólicos de tipo intervalo. O classificador proposto apresenta duas etapas básicas, a aprendizagem e a alocação, onde ambas necessitam de uma etapa precedente de préprocessamento que transforma os dados simbólicos do tipo intervalo em dados simbólicos modal. Cada exemplo do conjunto de aprendizagem é descrito por um vetor de intervalos. Após o pré-processamento, cada exemplo passa a ser descrito por um vetor de distribuições de pesos. Após a etapa de aprendizagem, cada classe é também descrita por um vetor de distribuições de pesos que sintetiza as informações dos exemplos da classe. Cada novo exemplo a ser atribuído a uma classe (etapa de alocação), representado por um vetor de intervalos, após a fase de pré-processamento passa a ser descrito por um vetor de distribuições de pesos. A alocação de um exemplo a uma classe é realizada através de funções de dissimilaridade que comparam pares de vetores de distribuições de pesos. Algumas funções de dissimilaridade desse tipo são consideradas nesse trabalho. A avaliação do desempenho desse classificador é realizada através da aplicação do mesmo a conjuntos de dados sintéticos em uma experiência Monte Carlo e a conjuntos de dados reais usando a técnica de validação cruzada leave-one-out. O desempenho é medido pela taxa (média) de erro de classificação e pelo tempo de execução das etapas de aprendizagem e classificação. Além disso, o desempenho desse classificador foi comparado com o desempenho de um classificador de tipo k-vizinhos mais próximos também de semântica modal. Através desses exemplos, esse trabalho mostra alguns dos interesses desse classificador de semântica modalConselho Nacional de Desenvolvimento Científico e TecnológicoUniversidade Federal de Pernambucode Assis Tenório Carvalho, Francisco César Donato Silva, Fábio2014-06-12T16:00:26Z2014-06-12T16:00:26Z2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCésar Donato Silva, Fábio; de Assis Tenório Carvalho, Francisco. Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007.https://repositorio.ufpe.br/handle/123456789/2707porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T14:21:16Zoai:repositorio.ufpe.br:123456789/2707Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T14:21:16Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal |
| title |
Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal |
| spellingShingle |
Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal César Donato Silva, Fábio Analise de dados simbólicos Classificador simbólico modal Classificação supervisionada Dados simbólicos modas Funções de dissimilaridade |
| title_short |
Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal |
| title_full |
Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal |
| title_fullStr |
Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal |
| title_full_unstemmed |
Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal |
| title_sort |
Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal |
| author |
César Donato Silva, Fábio |
| author_facet |
César Donato Silva, Fábio |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
de Assis Tenório Carvalho, Francisco |
| dc.contributor.author.fl_str_mv |
César Donato Silva, Fábio |
| dc.subject.por.fl_str_mv |
Analise de dados simbólicos Classificador simbólico modal Classificação supervisionada Dados simbólicos modas Funções de dissimilaridade |
| topic |
Analise de dados simbólicos Classificador simbólico modal Classificação supervisionada Dados simbólicos modas Funções de dissimilaridade |
| description |
A Análise de Dados Simbólicos (Symbolic Data Analysis) é um domínio na área de descoberta automática de conhecimento que visa desenvolver métodos para dados descritos por variáveis que podem assumir como valor conjuntos ou listas de categorias, intervalos ou distribuições de probabilidade. Essas variáveis permitem levar em conta a variabilidade e/ou a incerteza presente nos dados. Este trabalho apresenta um classificador simbólico de semântica modal para dados simbólicos de tipo intervalo. O classificador proposto apresenta duas etapas básicas, a aprendizagem e a alocação, onde ambas necessitam de uma etapa precedente de préprocessamento que transforma os dados simbólicos do tipo intervalo em dados simbólicos modal. Cada exemplo do conjunto de aprendizagem é descrito por um vetor de intervalos. Após o pré-processamento, cada exemplo passa a ser descrito por um vetor de distribuições de pesos. Após a etapa de aprendizagem, cada classe é também descrita por um vetor de distribuições de pesos que sintetiza as informações dos exemplos da classe. Cada novo exemplo a ser atribuído a uma classe (etapa de alocação), representado por um vetor de intervalos, após a fase de pré-processamento passa a ser descrito por um vetor de distribuições de pesos. A alocação de um exemplo a uma classe é realizada através de funções de dissimilaridade que comparam pares de vetores de distribuições de pesos. Algumas funções de dissimilaridade desse tipo são consideradas nesse trabalho. A avaliação do desempenho desse classificador é realizada através da aplicação do mesmo a conjuntos de dados sintéticos em uma experiência Monte Carlo e a conjuntos de dados reais usando a técnica de validação cruzada leave-one-out. O desempenho é medido pela taxa (média) de erro de classificação e pelo tempo de execução das etapas de aprendizagem e classificação. Além disso, o desempenho desse classificador foi comparado com o desempenho de um classificador de tipo k-vizinhos mais próximos também de semântica modal. Através desses exemplos, esse trabalho mostra alguns dos interesses desse classificador de semântica modal |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007 2014-06-12T16:00:26Z 2014-06-12T16:00:26Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
César Donato Silva, Fábio; de Assis Tenório Carvalho, Francisco. Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007. https://repositorio.ufpe.br/handle/123456789/2707 |
| identifier_str_mv |
César Donato Silva, Fábio; de Assis Tenório Carvalho, Francisco. Classificação Supervisionada Usando Dados Simbólicos de Semântica Modal. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007. |
| url |
https://repositorio.ufpe.br/handle/123456789/2707 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041892914921472 |