Detection and inferences in non-gaussian signals

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: PALM, Bruna Gregory
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso embargado
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/37775
Resumo: Signal detection is a fundamental task in the field of signal and image processing, being pivotal for decision whether a signal is present or identify the different land cover type in synthetic aperture radar (SAR) images. Over the years, detection schemes have been developed assuming the Gaussian distribution. However, in the real world, most of signals are non-Gaussian, and the Gaussianity assumption may not be enough to model several practical contexts. In particular, quantized discrete-time sampled data and amplitude values of a SAR image pixels constitute clear examples of non-Gaussian data. Thus, in this thesis, we derived tools for non-Gaussian signals, such as (i) a new regression model based on the Rayleigh distribution; (ii) bias-adjusted estimators for the Rayleigh regression model parameters; (iii) a new two-dimensional autoregressive moving average model based on the Rayleigh distribution; (iv) a new time series model assuming the beta binomial distribution; and (v) the use of a stack of SAR images to obtain a ground scene prediction (GSP) image. The proposed Rayleigh regression model was applied in detection schemes of land cover type in SAR images and the obtained results were compared to the measurements from Gaussian-, Gamma-, and Weibull-based regression models. The Rayleigh regression model was the only model that could detect the difference among the three tested regions. The two-dimensional Rayleigh autoregressive moving average model were applied to detect changes in SAR images. For comparison purposes, we also obtained the detection results based on the two-dimensional Gaussian model. The proposed method detected 24 in a total of 25 military vehicles, while the Gaussian-based scheme detected only 16 military vehicles. The derived beta binomial autoregressive moving average model was employed in nonrandom signals detection showing a higher probability of detection and a lower probability of false alarm in comparison to the traditional Gaussian based methods. The obtained GPS image based on the median method was considered in a change detection algorithm displaying a probability of detection of 97% and a false alarm rate of 0:11=km², when considering military vehicles concealed in a forest.
id UFPE_b3afeb765f9dd520e829fa1d9d84e6a7
oai_identifier_str oai:repositorio.ufpe.br:123456789/37775
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Detection and inferences in non-gaussian signalsDetecção de mudançasEstimadores pontuais corrigidosModelos de regressãoImagens SARSignal detection is a fundamental task in the field of signal and image processing, being pivotal for decision whether a signal is present or identify the different land cover type in synthetic aperture radar (SAR) images. Over the years, detection schemes have been developed assuming the Gaussian distribution. However, in the real world, most of signals are non-Gaussian, and the Gaussianity assumption may not be enough to model several practical contexts. In particular, quantized discrete-time sampled data and amplitude values of a SAR image pixels constitute clear examples of non-Gaussian data. Thus, in this thesis, we derived tools for non-Gaussian signals, such as (i) a new regression model based on the Rayleigh distribution; (ii) bias-adjusted estimators for the Rayleigh regression model parameters; (iii) a new two-dimensional autoregressive moving average model based on the Rayleigh distribution; (iv) a new time series model assuming the beta binomial distribution; and (v) the use of a stack of SAR images to obtain a ground scene prediction (GSP) image. The proposed Rayleigh regression model was applied in detection schemes of land cover type in SAR images and the obtained results were compared to the measurements from Gaussian-, Gamma-, and Weibull-based regression models. The Rayleigh regression model was the only model that could detect the difference among the three tested regions. The two-dimensional Rayleigh autoregressive moving average model were applied to detect changes in SAR images. For comparison purposes, we also obtained the detection results based on the two-dimensional Gaussian model. The proposed method detected 24 in a total of 25 military vehicles, while the Gaussian-based scheme detected only 16 military vehicles. The derived beta binomial autoregressive moving average model was employed in nonrandom signals detection showing a higher probability of detection and a lower probability of false alarm in comparison to the traditional Gaussian based methods. The obtained GPS image based on the median method was considered in a change detection algorithm displaying a probability of detection of 97% and a false alarm rate of 0:11=km², when considering military vehicles concealed in a forest.CAPESm processamento de sinais e de imagens, detecção é um problema amplamente discutido na literatura, seja para detectar a presença de um sinal ou para identificar o tipo de solo em uma imagem de radar de abertura sintética (SAR). Ao longo dos anos, os métodos de detecção foram desenvolvidos assumindo distribuição gaussiana. Entretanto, em situações reais, os sinais são não gaussianos. Dois típicos exemplos de sinais tipicamente não gaussianos são os sinais digitais e os valores de amplitude em uma imagem SAR. Desta forma, na presente tese, são derivadas ferramentas para sinais não gaussianos, tais como: (i) um novo modelo de regressão baseado na distribuição Rayleigh; (ii) estimadores corrigidos para os parâmetros do modelo de regressão Rayleigh proposto; (iii) um novo modelo autorregressivo de médias moveis bidimensional baseado na distribuição Rayleigh; (iv) um novo modelo de séries temporais assumindo a distribuição beta binomial e (v) o uso de um pacote de images SAR para obter uma previsão sobre o verdadeiro terreno das imagens. O modelo de regressão proposto foi considerado em detecção do tipo de solo em images SAR e os resultados obtidos foram comparados com os modelos baseados nas distribuições gaussiana, gama e Weibull. O modelo de regressão Rayleigh foi o único modelo capaz de detectar diferença no tipo de solo das três áreas testadas. O modelo bidimensional proposto foi empregado na detecção de mudança em images SAR, e os resultados de detecção baseados no modelo bidimensional Gaussiano foram utilizados como critério de comparação. O modelo proposto detectou 24 dos 25 veículos militares presentes na imagem SAR, enquanto que o modelo Gaussiano detectou apenas 16 alvos. Ainda, o modelo beta binomial autorregressivo de média móveis derivado foi empregado em detecção de sinais não aleatórios apresentando maiores valores de probabilidade de detecção e menos taxas de falso alarme em comparação aos tradicionais métodos de detecção baseados na distribuição Gaussiana. Finalmente, a imagem predita baseada no método da mediana obtida considerando um pacote de imagens SAR foi utilizada em um algoritmo de detecção de mudanças apresentando probabilidade de detecção de veículos militares de 97% e taxa de falso alarme de 0:11=km².Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaCINTRA, Renato José de SobralBAYER, Fábio Marianohttp://lattes.cnpq.br/0810172189372168http://lattes.cnpq.br/7413544381333504http://lattes.cnpq.br/9904863693302949PALM, Bruna Gregory2020-09-01T01:44:19Z2020-09-01T01:44:19Z2020-02-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfPALM, Bruna Gregory. Detection and inferences in non-gaussian signals. 2020. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/37775porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2020-09-01T05:10:17Zoai:repositorio.ufpe.br:123456789/37775Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-09-01T05:10:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Detection and inferences in non-gaussian signals
title Detection and inferences in non-gaussian signals
spellingShingle Detection and inferences in non-gaussian signals
PALM, Bruna Gregory
Detecção de mudanças
Estimadores pontuais corrigidos
Modelos de regressão
Imagens SAR
title_short Detection and inferences in non-gaussian signals
title_full Detection and inferences in non-gaussian signals
title_fullStr Detection and inferences in non-gaussian signals
title_full_unstemmed Detection and inferences in non-gaussian signals
title_sort Detection and inferences in non-gaussian signals
author PALM, Bruna Gregory
author_facet PALM, Bruna Gregory
author_role author
dc.contributor.none.fl_str_mv CINTRA, Renato José de Sobral
BAYER, Fábio Mariano
http://lattes.cnpq.br/0810172189372168
http://lattes.cnpq.br/7413544381333504
http://lattes.cnpq.br/9904863693302949
dc.contributor.author.fl_str_mv PALM, Bruna Gregory
dc.subject.por.fl_str_mv Detecção de mudanças
Estimadores pontuais corrigidos
Modelos de regressão
Imagens SAR
topic Detecção de mudanças
Estimadores pontuais corrigidos
Modelos de regressão
Imagens SAR
description Signal detection is a fundamental task in the field of signal and image processing, being pivotal for decision whether a signal is present or identify the different land cover type in synthetic aperture radar (SAR) images. Over the years, detection schemes have been developed assuming the Gaussian distribution. However, in the real world, most of signals are non-Gaussian, and the Gaussianity assumption may not be enough to model several practical contexts. In particular, quantized discrete-time sampled data and amplitude values of a SAR image pixels constitute clear examples of non-Gaussian data. Thus, in this thesis, we derived tools for non-Gaussian signals, such as (i) a new regression model based on the Rayleigh distribution; (ii) bias-adjusted estimators for the Rayleigh regression model parameters; (iii) a new two-dimensional autoregressive moving average model based on the Rayleigh distribution; (iv) a new time series model assuming the beta binomial distribution; and (v) the use of a stack of SAR images to obtain a ground scene prediction (GSP) image. The proposed Rayleigh regression model was applied in detection schemes of land cover type in SAR images and the obtained results were compared to the measurements from Gaussian-, Gamma-, and Weibull-based regression models. The Rayleigh regression model was the only model that could detect the difference among the three tested regions. The two-dimensional Rayleigh autoregressive moving average model were applied to detect changes in SAR images. For comparison purposes, we also obtained the detection results based on the two-dimensional Gaussian model. The proposed method detected 24 in a total of 25 military vehicles, while the Gaussian-based scheme detected only 16 military vehicles. The derived beta binomial autoregressive moving average model was employed in nonrandom signals detection showing a higher probability of detection and a lower probability of false alarm in comparison to the traditional Gaussian based methods. The obtained GPS image based on the median method was considered in a change detection algorithm displaying a probability of detection of 97% and a false alarm rate of 0:11=km², when considering military vehicles concealed in a forest.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-01T01:44:19Z
2020-09-01T01:44:19Z
2020-02-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PALM, Bruna Gregory. Detection and inferences in non-gaussian signals. 2020. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2020.
https://repositorio.ufpe.br/handle/123456789/37775
identifier_str_mv PALM, Bruna Gregory. Detection and inferences in non-gaussian signals. 2020. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2020.
url https://repositorio.ufpe.br/handle/123456789/37775
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041862833373184