PairClassif - Um Método para Classificação de Sentimentos Baseado em Pares

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: SILVA, Nelson Gutemberg Rocha da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11441
Resumo: Na última década, a Internet tem crescido de forma surpreendente, tornando-se uma das maiores bases de informações do mundo. Com o surgimento e o rápido cresci-mento de Blogs, Fóruns e Redes Sociais, milhões de usuários tornam públicas suas opi-niões sobre os mais diversos assuntos. Esse tipo de informação é de grande auxílio para pessoas e empresas na hora de tomar uma decisão. Contudo, toda essa informação está dispersa na Web, em formato livre, tornando impraticável a análise manual dessas opiniões com o objetivo de se obter o “sentimento geral” acerca de um produto ou serviço. Automatizar essa tarefa é a me-lhor alternativa. Porém, interpretar textos em formato livre não é uma tarefa trivial para o computador, devido às irregularidades e à ambiguidade inerentes às línguas naturais. Nesse contexto, estão surgindo sistemas que tratam as opiniões de forma auto-mática utilizando-se dos conceitos da área de Análise de Sentimentos (AS), também conhecido por Mineração de Opinião. A AS se preocupa em classificar opiniões expres-sas em textos, com respeito a um determinado produto ou serviço, como positivas ou negativas. Muitos trabalhos foram propostos na área de Análise Sentimentos, porém, a maioria destes provê uma avaliação global para o sentimento expresso no texto. O Tra-balho aqui proposto busca realizar uma análise mais refinada, que é conhecida como Classificação em Nível de Característica. Nesse nível busca-se classificar a polaridade das opiniões sobre cada característica do objeto sendo monitorado. O processo proposto classifica pares (característica, palavra opinativa), uma vez que alguns adjetivos mudam de polaridade a depender do substantivo que eles qua-lificam (e.g., “cerveja quente”, “pizza quente”). Utilizamos aqui técnicas baseadas em Estatística e Linguística, com apoio da ferramenta SentiWordNet [ESULI & SEBASTI-ANI, 2006]. Resultados experimentais mostraram que o processo tem alta eficácia, su-perando outros métodos existentes.
id UFPE_b60bdcd3300eac05e244d7926d1c148e
oai_identifier_str oai:repositorio.ufpe.br:123456789/11441
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling PairClassif - Um Método para Classificação de Sentimentos Baseado em ParesAnálise de SentimentoClassificação de SentimentoNa última década, a Internet tem crescido de forma surpreendente, tornando-se uma das maiores bases de informações do mundo. Com o surgimento e o rápido cresci-mento de Blogs, Fóruns e Redes Sociais, milhões de usuários tornam públicas suas opi-niões sobre os mais diversos assuntos. Esse tipo de informação é de grande auxílio para pessoas e empresas na hora de tomar uma decisão. Contudo, toda essa informação está dispersa na Web, em formato livre, tornando impraticável a análise manual dessas opiniões com o objetivo de se obter o “sentimento geral” acerca de um produto ou serviço. Automatizar essa tarefa é a me-lhor alternativa. Porém, interpretar textos em formato livre não é uma tarefa trivial para o computador, devido às irregularidades e à ambiguidade inerentes às línguas naturais. Nesse contexto, estão surgindo sistemas que tratam as opiniões de forma auto-mática utilizando-se dos conceitos da área de Análise de Sentimentos (AS), também conhecido por Mineração de Opinião. A AS se preocupa em classificar opiniões expres-sas em textos, com respeito a um determinado produto ou serviço, como positivas ou negativas. Muitos trabalhos foram propostos na área de Análise Sentimentos, porém, a maioria destes provê uma avaliação global para o sentimento expresso no texto. O Tra-balho aqui proposto busca realizar uma análise mais refinada, que é conhecida como Classificação em Nível de Característica. Nesse nível busca-se classificar a polaridade das opiniões sobre cada característica do objeto sendo monitorado. O processo proposto classifica pares (característica, palavra opinativa), uma vez que alguns adjetivos mudam de polaridade a depender do substantivo que eles qua-lificam (e.g., “cerveja quente”, “pizza quente”). Utilizamos aqui técnicas baseadas em Estatística e Linguística, com apoio da ferramenta SentiWordNet [ESULI & SEBASTI-ANI, 2006]. Resultados experimentais mostraram que o processo tem alta eficácia, su-perando outros métodos existentes.Universidade Federal de PernambucoBARROS, Flávia de AlmeidaSILVA, Nelson Gutemberg Rocha da2015-03-09T13:49:25Z2015-03-09T13:49:25Z2013-01-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/11441porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T07:43:29Zoai:repositorio.ufpe.br:123456789/11441Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:43:29Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv PairClassif - Um Método para Classificação de Sentimentos Baseado em Pares
title PairClassif - Um Método para Classificação de Sentimentos Baseado em Pares
spellingShingle PairClassif - Um Método para Classificação de Sentimentos Baseado em Pares
SILVA, Nelson Gutemberg Rocha da
Análise de Sentimento
Classificação de Sentimento
title_short PairClassif - Um Método para Classificação de Sentimentos Baseado em Pares
title_full PairClassif - Um Método para Classificação de Sentimentos Baseado em Pares
title_fullStr PairClassif - Um Método para Classificação de Sentimentos Baseado em Pares
title_full_unstemmed PairClassif - Um Método para Classificação de Sentimentos Baseado em Pares
title_sort PairClassif - Um Método para Classificação de Sentimentos Baseado em Pares
author SILVA, Nelson Gutemberg Rocha da
author_facet SILVA, Nelson Gutemberg Rocha da
author_role author
dc.contributor.none.fl_str_mv BARROS, Flávia de Almeida
dc.contributor.author.fl_str_mv SILVA, Nelson Gutemberg Rocha da
dc.subject.por.fl_str_mv Análise de Sentimento
Classificação de Sentimento
topic Análise de Sentimento
Classificação de Sentimento
description Na última década, a Internet tem crescido de forma surpreendente, tornando-se uma das maiores bases de informações do mundo. Com o surgimento e o rápido cresci-mento de Blogs, Fóruns e Redes Sociais, milhões de usuários tornam públicas suas opi-niões sobre os mais diversos assuntos. Esse tipo de informação é de grande auxílio para pessoas e empresas na hora de tomar uma decisão. Contudo, toda essa informação está dispersa na Web, em formato livre, tornando impraticável a análise manual dessas opiniões com o objetivo de se obter o “sentimento geral” acerca de um produto ou serviço. Automatizar essa tarefa é a me-lhor alternativa. Porém, interpretar textos em formato livre não é uma tarefa trivial para o computador, devido às irregularidades e à ambiguidade inerentes às línguas naturais. Nesse contexto, estão surgindo sistemas que tratam as opiniões de forma auto-mática utilizando-se dos conceitos da área de Análise de Sentimentos (AS), também conhecido por Mineração de Opinião. A AS se preocupa em classificar opiniões expres-sas em textos, com respeito a um determinado produto ou serviço, como positivas ou negativas. Muitos trabalhos foram propostos na área de Análise Sentimentos, porém, a maioria destes provê uma avaliação global para o sentimento expresso no texto. O Tra-balho aqui proposto busca realizar uma análise mais refinada, que é conhecida como Classificação em Nível de Característica. Nesse nível busca-se classificar a polaridade das opiniões sobre cada característica do objeto sendo monitorado. O processo proposto classifica pares (característica, palavra opinativa), uma vez que alguns adjetivos mudam de polaridade a depender do substantivo que eles qua-lificam (e.g., “cerveja quente”, “pizza quente”). Utilizamos aqui técnicas baseadas em Estatística e Linguística, com apoio da ferramenta SentiWordNet [ESULI & SEBASTI-ANI, 2006]. Resultados experimentais mostraram que o processo tem alta eficácia, su-perando outros métodos existentes.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-28
2015-03-09T13:49:25Z
2015-03-09T13:49:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/11441
url https://repositorio.ufpe.br/handle/123456789/11441
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042069861072896