Time series forecasting with deep forest regression
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/43505 |
Resumo: | A time series is a collection of ordered observations which are usually measured in repeated intervals. Time series forecasting is an area of research which studies methods for prediction of future values in a series. Forecasting methods range from statistical procedures, such as ARIMA to, more recently, machine learning approaches. Deep neural networks (DNNs) have shown good performance on a great number of tasks, including time series forecasting for which DNNs are considered state-of-the-art. Most deep models today are neural networks, but despite its popularity and proven competitive performance when compared to other machine learning algorithms, DNNs still face some limitations. Most notably, they usually require a large number of training examples - which could be unavailable for smaller time series - and they possess a large number of hyper-parameters which need to be tuned to individual datasets. Multi-grained cascade forest (gcForest) is a deep machine learning algorithm which has been proposed for classification and that addresses DNNs limitations while replicating the features which are responsible for the success of this type of model. This dissertation’s goal is to adapt the original gcForest algorithm in order for it to work with regression problems, enabling it to be applied to time series forecasting. The influence of the two different stages of gcForest - multi-grained scanning and cascade forest, is also investigated. Also explored is the possibility of adding an additional model to the end of the cascade forest structure and thus change the way the final result is calculated. Changes to the algorithm are presented and its performance is evaluated on four different time series datasets, according to three performance metrics: mean squared error, mean absolute error and mean absolute percentage error. Results show that gcForest achieves competitive performance on all four datasets, when compared to traditional machine learning models. |
| id |
UFPE_b802060797d5600e522e1e6b7a4679fa |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/43505 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Time series forecasting with deep forest regressionInteligência computacionalRegressãoSéries temporaisA time series is a collection of ordered observations which are usually measured in repeated intervals. Time series forecasting is an area of research which studies methods for prediction of future values in a series. Forecasting methods range from statistical procedures, such as ARIMA to, more recently, machine learning approaches. Deep neural networks (DNNs) have shown good performance on a great number of tasks, including time series forecasting for which DNNs are considered state-of-the-art. Most deep models today are neural networks, but despite its popularity and proven competitive performance when compared to other machine learning algorithms, DNNs still face some limitations. Most notably, they usually require a large number of training examples - which could be unavailable for smaller time series - and they possess a large number of hyper-parameters which need to be tuned to individual datasets. Multi-grained cascade forest (gcForest) is a deep machine learning algorithm which has been proposed for classification and that addresses DNNs limitations while replicating the features which are responsible for the success of this type of model. This dissertation’s goal is to adapt the original gcForest algorithm in order for it to work with regression problems, enabling it to be applied to time series forecasting. The influence of the two different stages of gcForest - multi-grained scanning and cascade forest, is also investigated. Also explored is the possibility of adding an additional model to the end of the cascade forest structure and thus change the way the final result is calculated. Changes to the algorithm are presented and its performance is evaluated on four different time series datasets, according to three performance metrics: mean squared error, mean absolute error and mean absolute percentage error. Results show that gcForest achieves competitive performance on all four datasets, when compared to traditional machine learning models.Uma série temporal é uma sequência de observações medidas em espaços de tempo definidos. Previsão de séries temporais é uma área de pesquisa que estuda métodos para previsão de valores futuros em uma série. Métodos de previsão variam de procedimentos estatísticos, como o ARIMA, para, mais recentemente, abordagens com aprendizagem de máquina. Redes neurais profundas, em específico, mostraram um bom desempenho em uma variedade de problemas, incluindo a previsão de séries temporais, onde são consideradas estado da arte. A maioria dos modelos de aprendizagem profunda atualmente são redes neurais, mas, apesar de sua popularidade e bom desempenho quando comparado a outros algoritmos de aprendizagem de máquina, redes neurais profundas ainda possuem algumas limitações. Mais notavelmente, este tipo de modelo normalmente precisa de uma quantidade maior de exemplos de treinamento, que podem não estar disponíveis para séries temporais mais curtas, além de possuir uma grande quantidade de parâmetros que precisam ser ajustados a cada conjunto de dados. O Multi-grained Cascade Forest (gcForest) é um modelo de aprendizagem profunda proposto para problemas de classificação e que endereça as limitações das redes neurais profundas, enquanto replica características responsáveis pelo sucesso desse tipo de modelo. O objetivo desta dissertação é adaptar o algoritmo original do gcForest para que ele possa ser aplicado a problemas de regressão, possibilitando que o mesmo seja utilizado para previsão de séries temporais. A influência das duas etapas do gcForest - multi-grained scanning e cascade forest - também é avaliada. Além disso, é explorada a possibilidade de adicionar um regressor ao final da etapa de cascade forest e assim alterar a forma de cálculo do resultado final. Após apresentar as mudanças feitas ao algoritmo, seu desempenho é avaliado em quatro séries temporais diferentes de acordo com três métricas de performance: erro médio quadrado, erro médio absoluto e o erro percentual absoluto médio. Resultados mostram que a versão proposta do gcForest atinge um desempenho competitivo quando comparado a modelos tradicionais de aprendizagem de máquina.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoMATTOS NETO, Paulo Salgado Gomes deCAVALCANTI, George Darmiton da Cunhahttp://lattes.cnpq.br/7170312279134322http://lattes.cnpq.br/4610098557429398http://lattes.cnpq.br/8577312109146354ANDRADE, Renata Correia de2022-03-24T17:32:03Z2022-03-24T17:32:03Z2020-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfANDRADE, Renata Correia de. Time series forecasting with deep forest regression. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/43505engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2022-03-25T05:11:14Zoai:repositorio.ufpe.br:123456789/43505Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-03-25T05:11:14Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Time series forecasting with deep forest regression |
| title |
Time series forecasting with deep forest regression |
| spellingShingle |
Time series forecasting with deep forest regression ANDRADE, Renata Correia de Inteligência computacional Regressão Séries temporais |
| title_short |
Time series forecasting with deep forest regression |
| title_full |
Time series forecasting with deep forest regression |
| title_fullStr |
Time series forecasting with deep forest regression |
| title_full_unstemmed |
Time series forecasting with deep forest regression |
| title_sort |
Time series forecasting with deep forest regression |
| author |
ANDRADE, Renata Correia de |
| author_facet |
ANDRADE, Renata Correia de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
MATTOS NETO, Paulo Salgado Gomes de CAVALCANTI, George Darmiton da Cunha http://lattes.cnpq.br/7170312279134322 http://lattes.cnpq.br/4610098557429398 http://lattes.cnpq.br/8577312109146354 |
| dc.contributor.author.fl_str_mv |
ANDRADE, Renata Correia de |
| dc.subject.por.fl_str_mv |
Inteligência computacional Regressão Séries temporais |
| topic |
Inteligência computacional Regressão Séries temporais |
| description |
A time series is a collection of ordered observations which are usually measured in repeated intervals. Time series forecasting is an area of research which studies methods for prediction of future values in a series. Forecasting methods range from statistical procedures, such as ARIMA to, more recently, machine learning approaches. Deep neural networks (DNNs) have shown good performance on a great number of tasks, including time series forecasting for which DNNs are considered state-of-the-art. Most deep models today are neural networks, but despite its popularity and proven competitive performance when compared to other machine learning algorithms, DNNs still face some limitations. Most notably, they usually require a large number of training examples - which could be unavailable for smaller time series - and they possess a large number of hyper-parameters which need to be tuned to individual datasets. Multi-grained cascade forest (gcForest) is a deep machine learning algorithm which has been proposed for classification and that addresses DNNs limitations while replicating the features which are responsible for the success of this type of model. This dissertation’s goal is to adapt the original gcForest algorithm in order for it to work with regression problems, enabling it to be applied to time series forecasting. The influence of the two different stages of gcForest - multi-grained scanning and cascade forest, is also investigated. Also explored is the possibility of adding an additional model to the end of the cascade forest structure and thus change the way the final result is calculated. Changes to the algorithm are presented and its performance is evaluated on four different time series datasets, according to three performance metrics: mean squared error, mean absolute error and mean absolute percentage error. Results show that gcForest achieves competitive performance on all four datasets, when compared to traditional machine learning models. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-11-30 2022-03-24T17:32:03Z 2022-03-24T17:32:03Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
ANDRADE, Renata Correia de. Time series forecasting with deep forest regression. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021. https://repositorio.ufpe.br/handle/123456789/43505 |
| identifier_str_mv |
ANDRADE, Renata Correia de. Time series forecasting with deep forest regression. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021. |
| url |
https://repositorio.ufpe.br/handle/123456789/43505 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041875383779328 |