Exportação concluída — 

Classificação de pedestres em imagens degradadas

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Costa, André Fonseca
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
HOG
LBP
CSS
LTP
SVM
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11505
Resumo: Um detector de pedestres básico geralmente possui dois componentes principais: um que seleciona regiões da imagem que possivelmente contêm um pedestre (gerador de candidatos) e outro que classifica estas regiões em grupos de pedestres e não-pedestres (classificador). Estes classificadores normalmente baseiam-se em extratores de características, que são transformações que alteram a intensidade ou cor original dos pixels de uma imagem em uma nova representação, para ressaltar algum tipo de conhecimento sobre o conteúdo da imagem. Quando o ambiente é não-controlado, fatores externos podem influenciar negativamente no desempenho do classificador. Baixa resolução, ruído, desfoque e oclusão são alguns efeitos que podem ser gerados por estes fatores, degradando a qualidade das imagens obtidas e, consequentemente, das características extraídas. Esta dissertação propõe-se a avaliar como extratores de características comportam-se nesse tipo de ambiente. Estes cinco tipos de degradação foram simulados nas bases de imagem usadas nos experimentos: INRIA Person e Caltech Pedestrian. Como estamos interessados apenas na etapa de classificação, as imagens foram transformadas em janelas de tamanho fixo na etapa de pré-processamento. Os experimentos usam uma combinação de extratores de características (HOG, LBP, CSS, LGIP e LTP) e modelos de aprendizagem (AdaBoost e SVM linear) para formar classificadores. Os classificadores foram treinados com as imagens intactas e testados com imagens em diversos níveis de degradação. O HOG (42%) e LTP (54%) foram superiores aos demais em aproximadamente metade dos pontos de teste na INRIA Person e Caltech Pedestrian, respectivamente. Foi confirmada a queda de desempenho do LBP quando exposto a ruído, mostrando que o LGIP e o LTP amenizam isso. Também observou-se que o CSS é robusto a ruído, mas gera características fracas no geral. Por fim, notou-se que classificadores que combinam mais de um extrator de características foram superiores aos individuais em boa parte dos pontos de teste. Combinando-se todos os extratores, tem-se um classificador superior em 95,8% das situações ao criado somente com o melhor extrator no geral (HOG, na base da INRIA, e LTP, na base da Caltech).
id UFPE_bb77e4ed7f41accbaff7bf3e17f27a06
oai_identifier_str oai:repositorio.ufpe.br:123456789/11505
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Classificação de pedestres em imagens degradadasClassificação de PedestresDegradação de ImagemHOGLBPCSSLGIPLTPAdaBoostSVMUm detector de pedestres básico geralmente possui dois componentes principais: um que seleciona regiões da imagem que possivelmente contêm um pedestre (gerador de candidatos) e outro que classifica estas regiões em grupos de pedestres e não-pedestres (classificador). Estes classificadores normalmente baseiam-se em extratores de características, que são transformações que alteram a intensidade ou cor original dos pixels de uma imagem em uma nova representação, para ressaltar algum tipo de conhecimento sobre o conteúdo da imagem. Quando o ambiente é não-controlado, fatores externos podem influenciar negativamente no desempenho do classificador. Baixa resolução, ruído, desfoque e oclusão são alguns efeitos que podem ser gerados por estes fatores, degradando a qualidade das imagens obtidas e, consequentemente, das características extraídas. Esta dissertação propõe-se a avaliar como extratores de características comportam-se nesse tipo de ambiente. Estes cinco tipos de degradação foram simulados nas bases de imagem usadas nos experimentos: INRIA Person e Caltech Pedestrian. Como estamos interessados apenas na etapa de classificação, as imagens foram transformadas em janelas de tamanho fixo na etapa de pré-processamento. Os experimentos usam uma combinação de extratores de características (HOG, LBP, CSS, LGIP e LTP) e modelos de aprendizagem (AdaBoost e SVM linear) para formar classificadores. Os classificadores foram treinados com as imagens intactas e testados com imagens em diversos níveis de degradação. O HOG (42%) e LTP (54%) foram superiores aos demais em aproximadamente metade dos pontos de teste na INRIA Person e Caltech Pedestrian, respectivamente. Foi confirmada a queda de desempenho do LBP quando exposto a ruído, mostrando que o LGIP e o LTP amenizam isso. Também observou-se que o CSS é robusto a ruído, mas gera características fracas no geral. Por fim, notou-se que classificadores que combinam mais de um extrator de características foram superiores aos individuais em boa parte dos pontos de teste. Combinando-se todos os extratores, tem-se um classificador superior em 95,8% das situações ao criado somente com o melhor extrator no geral (HOG, na base da INRIA, e LTP, na base da Caltech).CapesUniversidade Federal de PernambucoRen, Tsang Ing Cavalcanti, George Darmiton da Cunha Costa, André Fonseca2015-03-09T14:45:10Z2015-03-09T14:45:10Z2013-11-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCOSTA, André Fonseca. Classificação de pedestres em imagens degradadas. Recife, 2013. 87 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013.https://repositorio.ufpe.br/handle/123456789/11505porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T07:41:00Zoai:repositorio.ufpe.br:123456789/11505Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:41Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Classificação de pedestres em imagens degradadas
title Classificação de pedestres em imagens degradadas
spellingShingle Classificação de pedestres em imagens degradadas
Costa, André Fonseca
Classificação de Pedestres
Degradação de Imagem
HOG
LBP
CSS
LGIP
LTP
AdaBoost
SVM
title_short Classificação de pedestres em imagens degradadas
title_full Classificação de pedestres em imagens degradadas
title_fullStr Classificação de pedestres em imagens degradadas
title_full_unstemmed Classificação de pedestres em imagens degradadas
title_sort Classificação de pedestres em imagens degradadas
author Costa, André Fonseca
author_facet Costa, André Fonseca
author_role author
dc.contributor.none.fl_str_mv Ren, Tsang Ing
Cavalcanti, George Darmiton da Cunha
dc.contributor.author.fl_str_mv Costa, André Fonseca
dc.subject.por.fl_str_mv Classificação de Pedestres
Degradação de Imagem
HOG
LBP
CSS
LGIP
LTP
AdaBoost
SVM
topic Classificação de Pedestres
Degradação de Imagem
HOG
LBP
CSS
LGIP
LTP
AdaBoost
SVM
description Um detector de pedestres básico geralmente possui dois componentes principais: um que seleciona regiões da imagem que possivelmente contêm um pedestre (gerador de candidatos) e outro que classifica estas regiões em grupos de pedestres e não-pedestres (classificador). Estes classificadores normalmente baseiam-se em extratores de características, que são transformações que alteram a intensidade ou cor original dos pixels de uma imagem em uma nova representação, para ressaltar algum tipo de conhecimento sobre o conteúdo da imagem. Quando o ambiente é não-controlado, fatores externos podem influenciar negativamente no desempenho do classificador. Baixa resolução, ruído, desfoque e oclusão são alguns efeitos que podem ser gerados por estes fatores, degradando a qualidade das imagens obtidas e, consequentemente, das características extraídas. Esta dissertação propõe-se a avaliar como extratores de características comportam-se nesse tipo de ambiente. Estes cinco tipos de degradação foram simulados nas bases de imagem usadas nos experimentos: INRIA Person e Caltech Pedestrian. Como estamos interessados apenas na etapa de classificação, as imagens foram transformadas em janelas de tamanho fixo na etapa de pré-processamento. Os experimentos usam uma combinação de extratores de características (HOG, LBP, CSS, LGIP e LTP) e modelos de aprendizagem (AdaBoost e SVM linear) para formar classificadores. Os classificadores foram treinados com as imagens intactas e testados com imagens em diversos níveis de degradação. O HOG (42%) e LTP (54%) foram superiores aos demais em aproximadamente metade dos pontos de teste na INRIA Person e Caltech Pedestrian, respectivamente. Foi confirmada a queda de desempenho do LBP quando exposto a ruído, mostrando que o LGIP e o LTP amenizam isso. Também observou-se que o CSS é robusto a ruído, mas gera características fracas no geral. Por fim, notou-se que classificadores que combinam mais de um extrator de características foram superiores aos individuais em boa parte dos pontos de teste. Combinando-se todos os extratores, tem-se um classificador superior em 95,8% das situações ao criado somente com o melhor extrator no geral (HOG, na base da INRIA, e LTP, na base da Caltech).
publishDate 2013
dc.date.none.fl_str_mv 2013-11-25
2015-03-09T14:45:10Z
2015-03-09T14:45:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv COSTA, André Fonseca. Classificação de pedestres em imagens degradadas. Recife, 2013. 87 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013.
https://repositorio.ufpe.br/handle/123456789/11505
identifier_str_mv COSTA, André Fonseca. Classificação de pedestres em imagens degradadas. Recife, 2013. 87 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013.
url https://repositorio.ufpe.br/handle/123456789/11505
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042080082591744