Development of machine and deep learning based models for risk and reliability problems

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: SOUTO MAIOR, Caio Bezerra
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso embargado
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/38377
Resumo: Artificial intelligence-based algorithms have evolved dramatically over the last couple of decades. Specifically, Machine Learning (ML) and Deep Learning (DL) models have emerged as solutions for many tasks previously unreachable, bringing innovation to the industry, with autonomous driving cars and smart houses, and revolutionizing the society with applications going from movie recommendation to medical diagnosis. In this context, this thesis proposes and brings discussion to ML and DL methodologies successfully developed for three distinct problems in applications related to risk and reliability engineering. In the first, a drowsiness detection model is developed to avoid accidents caused by inattention in the context of human reliability. The second problem deals with estimations of remaining useful life of bearings in the prognostic and health management context. In the last problem, a system to detect usage of personal protective equipment in the context to support safety monitoring is presented. In ML methodologies, support vector machines are used, while convolutional neural networks are applied to DL models. Considering the availability and accessibility of datasets, the obtained results demonstrate adequation of methodologies as tools to provide valuable information to support decisions.
id UFPE_bc05515c8a161e3c030f764f33fc597c
oai_identifier_str oai:repositorio.ufpe.br:123456789/38377
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Development of machine and deep learning based models for risk and reliability problemsEngenharia de ProduçãoMachine learningDeep learningTempo de vida útil residualDetecção de sonolência humanaMonitoramento de equipamento de proteção individualArtificial intelligence-based algorithms have evolved dramatically over the last couple of decades. Specifically, Machine Learning (ML) and Deep Learning (DL) models have emerged as solutions for many tasks previously unreachable, bringing innovation to the industry, with autonomous driving cars and smart houses, and revolutionizing the society with applications going from movie recommendation to medical diagnosis. In this context, this thesis proposes and brings discussion to ML and DL methodologies successfully developed for three distinct problems in applications related to risk and reliability engineering. In the first, a drowsiness detection model is developed to avoid accidents caused by inattention in the context of human reliability. The second problem deals with estimations of remaining useful life of bearings in the prognostic and health management context. In the last problem, a system to detect usage of personal protective equipment in the context to support safety monitoring is presented. In ML methodologies, support vector machines are used, while convolutional neural networks are applied to DL models. Considering the availability and accessibility of datasets, the obtained results demonstrate adequation of methodologies as tools to provide valuable information to support decisions.CAPESAlgoritmos baseados em inteligência artificial evoluíram drasticamente ao longo das últimas décadas. Especificamente, modelos de Machine Learning (ML) e Deep Learning (DL) surgiram como soluções para muitas tarefas anteriormente inacessíveis, trazendo inovações à indústria, com criação de carros autônomos e smart houses, e revolucionando a sociedade, com aplicações indo desde recomendações de filmes a diagnósticos médicos. Neste contexto, esta tese desenvolve e discute metodologias de ML e DL empregadas com sucesso em três cenários distintos em aplicações relacionadas à engenharia de confiabilidade e risco. A primeira aplicação visa desenvolver um modelo de detecção de sonolência para evitar acidentes causados por desatenção no contexto da confiabilidade humana. O segundo problema trata das estimativas de vida útil remanescente de rolamentos no contexto de prognostic and health management. No último problema, um sistema para detectar o uso de equipamentos de proteção individual é apresentado como suporte no contexto de monitoramento de segurança. Nas metodologias ML, support vector machines são usadas, enquanto redes neurais convolucionais são aplicadas em modelos de DL. Considerando a disponibilidade e acessibilidade dos conjuntos de dados, os resultados obtidos demonstram a adequação de tais metodologias como ferramentas para fornecimento de informações valiosas para o suporte às decisões.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia de ProducaoMOURA, Márcio José das Chagashttp://lattes.cnpq.br/3781749044433557ttp://lattes.cnpq.br/7778828466828647SOUTO MAIOR, Caio Bezerra2020-10-19T20:05:10Z2020-10-19T20:05:10Z2020-02-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSOUTO MAIOR, Caio Bezerra. Development of machine and deep learning based models for risk and reliability problems. 2020. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38377engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2020-10-20T05:15:14Zoai:repositorio.ufpe.br:123456789/38377Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-10-20T05:15:14Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Development of machine and deep learning based models for risk and reliability problems
title Development of machine and deep learning based models for risk and reliability problems
spellingShingle Development of machine and deep learning based models for risk and reliability problems
SOUTO MAIOR, Caio Bezerra
Engenharia de Produção
Machine learning
Deep learning
Tempo de vida útil residual
Detecção de sonolência humana
Monitoramento de equipamento de proteção individual
title_short Development of machine and deep learning based models for risk and reliability problems
title_full Development of machine and deep learning based models for risk and reliability problems
title_fullStr Development of machine and deep learning based models for risk and reliability problems
title_full_unstemmed Development of machine and deep learning based models for risk and reliability problems
title_sort Development of machine and deep learning based models for risk and reliability problems
author SOUTO MAIOR, Caio Bezerra
author_facet SOUTO MAIOR, Caio Bezerra
author_role author
dc.contributor.none.fl_str_mv MOURA, Márcio José das Chagas
http://lattes.cnpq.br/3781749044433557
ttp://lattes.cnpq.br/7778828466828647
dc.contributor.author.fl_str_mv SOUTO MAIOR, Caio Bezerra
dc.subject.por.fl_str_mv Engenharia de Produção
Machine learning
Deep learning
Tempo de vida útil residual
Detecção de sonolência humana
Monitoramento de equipamento de proteção individual
topic Engenharia de Produção
Machine learning
Deep learning
Tempo de vida útil residual
Detecção de sonolência humana
Monitoramento de equipamento de proteção individual
description Artificial intelligence-based algorithms have evolved dramatically over the last couple of decades. Specifically, Machine Learning (ML) and Deep Learning (DL) models have emerged as solutions for many tasks previously unreachable, bringing innovation to the industry, with autonomous driving cars and smart houses, and revolutionizing the society with applications going from movie recommendation to medical diagnosis. In this context, this thesis proposes and brings discussion to ML and DL methodologies successfully developed for three distinct problems in applications related to risk and reliability engineering. In the first, a drowsiness detection model is developed to avoid accidents caused by inattention in the context of human reliability. The second problem deals with estimations of remaining useful life of bearings in the prognostic and health management context. In the last problem, a system to detect usage of personal protective equipment in the context to support safety monitoring is presented. In ML methodologies, support vector machines are used, while convolutional neural networks are applied to DL models. Considering the availability and accessibility of datasets, the obtained results demonstrate adequation of methodologies as tools to provide valuable information to support decisions.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-19T20:05:10Z
2020-10-19T20:05:10Z
2020-02-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SOUTO MAIOR, Caio Bezerra. Development of machine and deep learning based models for risk and reliability problems. 2020. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2020.
https://repositorio.ufpe.br/handle/123456789/38377
identifier_str_mv SOUTO MAIOR, Caio Bezerra. Development of machine and deep learning based models for risk and reliability problems. 2020. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2020.
url https://repositorio.ufpe.br/handle/123456789/38377
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042006621454336