Development of machine and deep learning based models for risk and reliability problems
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso embargado |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/38377 |
Resumo: | Artificial intelligence-based algorithms have evolved dramatically over the last couple of decades. Specifically, Machine Learning (ML) and Deep Learning (DL) models have emerged as solutions for many tasks previously unreachable, bringing innovation to the industry, with autonomous driving cars and smart houses, and revolutionizing the society with applications going from movie recommendation to medical diagnosis. In this context, this thesis proposes and brings discussion to ML and DL methodologies successfully developed for three distinct problems in applications related to risk and reliability engineering. In the first, a drowsiness detection model is developed to avoid accidents caused by inattention in the context of human reliability. The second problem deals with estimations of remaining useful life of bearings in the prognostic and health management context. In the last problem, a system to detect usage of personal protective equipment in the context to support safety monitoring is presented. In ML methodologies, support vector machines are used, while convolutional neural networks are applied to DL models. Considering the availability and accessibility of datasets, the obtained results demonstrate adequation of methodologies as tools to provide valuable information to support decisions. |
| id |
UFPE_bc05515c8a161e3c030f764f33fc597c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/38377 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Development of machine and deep learning based models for risk and reliability problemsEngenharia de ProduçãoMachine learningDeep learningTempo de vida útil residualDetecção de sonolência humanaMonitoramento de equipamento de proteção individualArtificial intelligence-based algorithms have evolved dramatically over the last couple of decades. Specifically, Machine Learning (ML) and Deep Learning (DL) models have emerged as solutions for many tasks previously unreachable, bringing innovation to the industry, with autonomous driving cars and smart houses, and revolutionizing the society with applications going from movie recommendation to medical diagnosis. In this context, this thesis proposes and brings discussion to ML and DL methodologies successfully developed for three distinct problems in applications related to risk and reliability engineering. In the first, a drowsiness detection model is developed to avoid accidents caused by inattention in the context of human reliability. The second problem deals with estimations of remaining useful life of bearings in the prognostic and health management context. In the last problem, a system to detect usage of personal protective equipment in the context to support safety monitoring is presented. In ML methodologies, support vector machines are used, while convolutional neural networks are applied to DL models. Considering the availability and accessibility of datasets, the obtained results demonstrate adequation of methodologies as tools to provide valuable information to support decisions.CAPESAlgoritmos baseados em inteligência artificial evoluíram drasticamente ao longo das últimas décadas. Especificamente, modelos de Machine Learning (ML) e Deep Learning (DL) surgiram como soluções para muitas tarefas anteriormente inacessíveis, trazendo inovações à indústria, com criação de carros autônomos e smart houses, e revolucionando a sociedade, com aplicações indo desde recomendações de filmes a diagnósticos médicos. Neste contexto, esta tese desenvolve e discute metodologias de ML e DL empregadas com sucesso em três cenários distintos em aplicações relacionadas à engenharia de confiabilidade e risco. A primeira aplicação visa desenvolver um modelo de detecção de sonolência para evitar acidentes causados por desatenção no contexto da confiabilidade humana. O segundo problema trata das estimativas de vida útil remanescente de rolamentos no contexto de prognostic and health management. No último problema, um sistema para detectar o uso de equipamentos de proteção individual é apresentado como suporte no contexto de monitoramento de segurança. Nas metodologias ML, support vector machines são usadas, enquanto redes neurais convolucionais são aplicadas em modelos de DL. Considerando a disponibilidade e acessibilidade dos conjuntos de dados, os resultados obtidos demonstram a adequação de tais metodologias como ferramentas para fornecimento de informações valiosas para o suporte às decisões.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia de ProducaoMOURA, Márcio José das Chagashttp://lattes.cnpq.br/3781749044433557ttp://lattes.cnpq.br/7778828466828647SOUTO MAIOR, Caio Bezerra2020-10-19T20:05:10Z2020-10-19T20:05:10Z2020-02-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSOUTO MAIOR, Caio Bezerra. Development of machine and deep learning based models for risk and reliability problems. 2020. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38377engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2020-10-20T05:15:14Zoai:repositorio.ufpe.br:123456789/38377Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-10-20T05:15:14Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Development of machine and deep learning based models for risk and reliability problems |
| title |
Development of machine and deep learning based models for risk and reliability problems |
| spellingShingle |
Development of machine and deep learning based models for risk and reliability problems SOUTO MAIOR, Caio Bezerra Engenharia de Produção Machine learning Deep learning Tempo de vida útil residual Detecção de sonolência humana Monitoramento de equipamento de proteção individual |
| title_short |
Development of machine and deep learning based models for risk and reliability problems |
| title_full |
Development of machine and deep learning based models for risk and reliability problems |
| title_fullStr |
Development of machine and deep learning based models for risk and reliability problems |
| title_full_unstemmed |
Development of machine and deep learning based models for risk and reliability problems |
| title_sort |
Development of machine and deep learning based models for risk and reliability problems |
| author |
SOUTO MAIOR, Caio Bezerra |
| author_facet |
SOUTO MAIOR, Caio Bezerra |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
MOURA, Márcio José das Chagas http://lattes.cnpq.br/3781749044433557 ttp://lattes.cnpq.br/7778828466828647 |
| dc.contributor.author.fl_str_mv |
SOUTO MAIOR, Caio Bezerra |
| dc.subject.por.fl_str_mv |
Engenharia de Produção Machine learning Deep learning Tempo de vida útil residual Detecção de sonolência humana Monitoramento de equipamento de proteção individual |
| topic |
Engenharia de Produção Machine learning Deep learning Tempo de vida útil residual Detecção de sonolência humana Monitoramento de equipamento de proteção individual |
| description |
Artificial intelligence-based algorithms have evolved dramatically over the last couple of decades. Specifically, Machine Learning (ML) and Deep Learning (DL) models have emerged as solutions for many tasks previously unreachable, bringing innovation to the industry, with autonomous driving cars and smart houses, and revolutionizing the society with applications going from movie recommendation to medical diagnosis. In this context, this thesis proposes and brings discussion to ML and DL methodologies successfully developed for three distinct problems in applications related to risk and reliability engineering. In the first, a drowsiness detection model is developed to avoid accidents caused by inattention in the context of human reliability. The second problem deals with estimations of remaining useful life of bearings in the prognostic and health management context. In the last problem, a system to detect usage of personal protective equipment in the context to support safety monitoring is presented. In ML methodologies, support vector machines are used, while convolutional neural networks are applied to DL models. Considering the availability and accessibility of datasets, the obtained results demonstrate adequation of methodologies as tools to provide valuable information to support decisions. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-10-19T20:05:10Z 2020-10-19T20:05:10Z 2020-02-19 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
SOUTO MAIOR, Caio Bezerra. Development of machine and deep learning based models for risk and reliability problems. 2020. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2020. https://repositorio.ufpe.br/handle/123456789/38377 |
| identifier_str_mv |
SOUTO MAIOR, Caio Bezerra. Development of machine and deep learning based models for risk and reliability problems. 2020. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2020. |
| url |
https://repositorio.ufpe.br/handle/123456789/38377 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042006621454336 |